

APPLICATION

 Metallic bearing P.100-145

146 PLANNING

CORPORATE 165 **PROFILE**

178 SPECIFICATION SHEET

This catalog contains information on various Daido products and their design. Daido works constantly to develop and improve all its products, even those not included in this catalog, and we look forward to your continued patronage of all our products. The technical information provided in this catalog is based on the results of our extensive and varied research as well as our many years of experience. This data, however, is neither exhaustive nor applicable to all circumstances, and selection of a suitable product will vary depending upon your specific application. We recommend that all product selection be verified through testing. The content of this manual is subject to revision without prior notice.

The Ultimate Tribology that Expands our Horizons

"Tribology"- the word is derived from the Greek "tribos" meaning "friction" and refers to the basic technology of bearings: the physical and scientific analysis of friction, wear and lubrication when physical objects move. Machines always have parts that are subject to friction, making them susceptible to wear and other problems. In order to provide solutions to these problems Daido Metal established a tribological approach using a combination of bimetal, surface treatment and precision machining technologies. We now have a global reputation as a manufacturer of plain bearings for all fields with a strong focus on the automotive industry. The knowledge of bearings we have fostered has opened up new fields and is expanding the dreams and possibilities for 21st century society. Where there are moving parts you will find Daido products. Our aim is to build on our position as Japan's leader in Tribology to become the World's leader in Tribology.

The "D" of this symbol stands for "Daido Metal Company."

It also stands for "Development,"

"Dream" and "Dynamic."

The design also includes the "I"of"Innovation,"

"Invention" and "Intellectual excitement."

The shape represents "bimetal" and "half bearing"

and the curve is also an allusion to a bridge.

The blue color is the blue of the sky and the sea, meaning the Earth.

Environmental Responsibility

Meeting the Challenges of Ecology Through Technology

Daido Metal is also actively undertaking the development of ecological products that are not harmful to people or the environment.

The restriction on products containing materials such as lead, hexavalent chromium and other chemical substances that have an adverse impact on humans and the eco system on a global scale are becoming stricter as shown in the Restriction on Hazardous Substances (RoHS) and End-of-Life Vehicles (ELV) directives. As a company dealing with all types of bearings, from development through to scrapping, we rigorously control the chemical substances in our products and approach this issue with stress on completely eliminating such substances from use.

Instead of using lead which is the predominant bearing material, we are developing lead-free materials whose properties are equivalent to those of lead. We are doing this out of concern for the impact of lead on the environment. This is demonstrated in fields such as bearings for automotive use and bearings for dam gates where high ecological performance is a concern.

Products bearing this mark contain levels of cadmium, lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ether (PBDE) that are all within the restrictions of the RoHS Directive.

Products bearing this mark contain levels of cadmium, lead, mercury and hexavalent chromium that are within the restrictions of the ELV Directive.

DDK06

Reduced availability of metal-backed PTFE bearings

Daido has been manufacturing and selling metal-backed PTFE bearings for more than 30 years, but environmental issues have forced us to discontinue sales of some these products.

Affected material (discontinued)

DDU01
DDK05
DDK05
DDU31
DDK35
DDD01
DDK02

DDD02

In the future, when requesting the use of metal-backed PTFE in the design of a new bearing, please specify a material from the list of replacement materials. Also, for customers using existing products, we request that any follow-up orders include the use of a replacement material at your earliest convenience.

New Product Development

Cementing our Reputation as the Leading Company for Bearings through comprehensive Tribology Research and Development

Daido Metal has Tribology in its genes. Accordingly, we have established a central research laboratory that is one of the few comprehensive Tribology research and development bodies in the world. It deals with everything from theoretical research to development of new materials and composite materials, development and design of bearing products, and development of production technology. Its scope extends as far as the development of products that utilize technology relating to Tribology. By linking from the central research laboratory to the development teams in each production department, we can respond accurately to sophisticated requirements. Through joint development and technology exchange with our clients, who are world leaders in their fields, we can also make a contribution to improving the standard of technology. We are also contributing to international standardization through our participation in the "ISO/TC123 Japan Plain Bearing Committee" of the Japan Society of Mechanical Engineers.

Quality Assurance Recognized Worldwide

Daido Metal is promoting production activity based on supplying products to the user from our nearest production location. This is done through our global management system. In doing so we are able to not only acquire international quality standards such as ISO9001 and ISO/TS16949, but also to meet specific customer requirements and certification such as Ford

Permanent Environmental Management System

Daido Metal considers the global environment to be mankind's common asset. We actively work to protect the environment as it is an important issue. We perceive environmental management systems such as ISO 14001 as an effective tool to continuously reduce our impact on the environment.

System for Total In-house Integrated Production, Harnessing Technology at the Atomic Level

Manufacturing Processes of Plain Bearings

We implement integrated production with all processes done in-house, from the production of the bimetal material down to the manufacture of the final product. We implement strict control in each process to create high performance, high-precision products.

By layering steel and aluminum alloy and applying a

high pressure, bonding at the

atomic level is achieved.

Machining Process

Strips of bimetal are cut and formed to generate the product. Micron level accuracy is required in all processes.

Centrifugal Casting Manufacturing Process

This is the technology for making cylindrical bearings of uniform strength, with no joints. The bearing alloy is cast by utilizing the centrifugal force generated by rotating a steel pipe. All processes are integrated, from working to finishing.

Centrifugal Castin

Bimetal Manufacturing Process

that consists of a bearing layer

strongly bonded onto a steel substrate, which gives it strength

of different bearing materials.

A "bimetal" is a compound material

and dimensional stability. We make

use of a variety of bonding technolo-

gies matched to the characteristics

By scattering copper alloy

powder onto steel and then

heating to a high temperature, a diffused bonding is created.

APPLICATION

Automobiles

Automobile bearings are the cornerstone of Daido Metal's operations and have been adopted by all the global manufacturers. We have the largest market share in Japan for plain bearings for engines. The high-technology engines of today impose sophisticated demands such as high performance and high efficiency. Over one hundred different Daido Metal parts of thirty different types may be used for a single automobile: these are mainly engine-related but include other parts such as bushes for the power steering pump. These products of exceptionally high technical standards and reliability are used not only for passenger cars, buses and construction machinery, but also for racing cars including Formula 1, NASCAR and Indy car, giving an ultra high-tech edge in motor sports applications.

DAIDYNE DDK05

Door hinge

Throttle lever

Engine

DAITHERMO DTP

FOODS & ECOLOGY

Wind Power System

DAIDYNE DBB01

Beer Production Line

Offshore Oil Drilling Platform

TRANSPORT

This includes automobiles for personal transport, as well as railways and aircraft for the mass transportation of passengers and cargo. Manufacturers of these modes of transport are constantly searching for improvements in efficiency, convenience, comfort and safety. Our non-lubricant bearings provide excellent reliability with zero maintenance needed over a long period of time.

DAIBEST DBX01

DAISLIDE

Vessel

Monorail

CONSTRUCTION

Resources Development such as engineering and construction requires machinery that is designed for the hostile environment in which they operate. Particular requirements have led to our high impact resistant, wear resistant, non-lubricated bearings being specified in these machines. In other fields, such as dams, bridges and water gates earthquake resistant equipment is required.

Excavator

DAISLIDE

Construction site

Dam

GENERAL INDUSTRY

Our maintenance free bearings are also used in a wide range of Factory Automation equipment requiring high accuracy and complex process control in machine tools and injection moulding machines respectively, and also in industrial robots where there are strict requirements for wear resistance, seizure resistance and long term operation.

Roundness tester

Roller conveyor

THERMALLOY

DAIDYNE DDK05

AMUSEMENT

oller coaster

Ferris wheel

LEISURE & SPORT

375 kph race car F1 machine, motocross bike, jet ski, snowmobile — For those fields high-speed resistance, a comfortable ride and extra high safety are required. In those fields, our maintenance free highly reliable bearings are used in engines and shock absorber etc.

lacing car

DAIDYNE DDK35 Snowmobile

bile

COMMUNICATIONS AND OFFICE AUTOMATION SYSTEM

Photocopier, Printer, Video machines, etc. All of these are high performance information processing devices which use our non lubricant bearings meaning that they are free from oil stains and leakage in areas such as quiet, low vibration drives. Another benefit is the light weight and compact design.

Parabolic Antenna

DAIMESH DMM01

Multi-function Photocopier

LIVING AND HEALTH EQUIPMENT

Electrical equipment and Interior Appliances have one requirement in common: zero pollution. We have a wide range of bearings which support this requirement.

Home-care beds

ΗA

Massage equipment

MANUFACTURE

MATERIALS AND SIZ
Metallic Polym

NING

ORPORATE PROFILE

SPECIFICATION SHI

Contamination resistant

THERMALLOY D type THERMALLOY T type THERMALLOY BB type THERMALLOY PV plates

THERMALLOY pillow unit DAIBEST DBX01

DAISLIDE

Heat resistant

THERMALLOY T type THERMALLOY TM

Vibration resistant

DAIBEST DBB01

DAIBEST DBX01

DAITHERMO DTK

DAIHYLON DHR

Suitable for underwater applications

DAIDYNE DDK35

DAIMESH DMM01

DAIFORCE A

DAIFORCE G

THERMALLOY D type THERMALLOY T type THERMALLOY pillow unit DAISLIDE

DAIFORCE G

	Automotive parts	Coachwork	Automotive exhaust system parts	High-temperature valves	Conveyor equipment	Agricultural machinery	Construction equipment	Office automation equipment	Machine tools	Food processing equipment	Foundry equipment	Heavy industrial machinery	Shipbuilding equipment	Ceramics facilities	Dams	Sluice gates	Water turbines	Energy-saving equipment	Conveyor equipment	Printing equipment	All types of molds and dies	All types of food processing equipment	Furnace equipment	Injection-molding equipment and dies	Coastal and offshore structures	Compact motors	Audio-visual devices	Electronic devices	lemporary support for steel-framed structures	General-purpose industrial machinery	
THERMALLOY D type																•															THERMALLOY D type
THERMALLOY T type																•															THERMALLOY T type
THERMALLOY TM																															THERMALLOY TM
THERMALLOY BB type																•															THERMALLOY BB type
THERMALLOY PV plate																															THERMALLOY PV plate
THERMALLOY pillow unit																															THERMALLOY pillow unit
DAISLIDE HA																															DAISLIDE HA
DAISLIDE BA																															DAISLIDE BA
DAISLIDE SL																•															DAISLIDE SL
DAISLIDE KA																															DAISLIDE KA
DAILUBO																															DAILUBO

THERMALLOY T type

THERMALLOY D type

DAISLIDE

			Sliding	Wea	ar resis	tant	Resistanc	ce to heav	vy loading	Slic	ding sp	eed	Coeffic	oefficier	nt of friction	Contam	Effec	ts of a	ambie	nt cond	ditions	Operating		
No	Major applications	Construction	surface materials	Mainte- nance- free	Grease	Bound- aries and fluids	Mainte- nance- free	Grease	Bound- aries and fluids	Mainte- nance- free	Grease	Bound- aries and fluids	Mainte- nance- free	ninte- nce- e	Bound- aries and fluids	ination accepta nce	In air	In a vacuun	Under water		In acidity or alkalinity		Characteristics	Product
1	Hydraulic pumps, fans, dishwashers, building materials, automotive parts, office automation equipment	Steel-backing	PTFE	5	3	4	5	4	4	4	3	4	5	5	4 5	3	5	5	3	3	3	-200 – +280	Offers a low coefficient of friction and excellent wear-resistance under conditions.	DAIDYNE DDK05
2	Hydraulic pumps, fans, dishwashers, building materials, automotive parts, office automation equipment	Phosphor-bronze backing	PTFE and others	5	3	4	5	4	4	4	3	4	5	5	4 5	3	5	5	5	5	3	-200 – +280	Offers a low coefficient of friction and excellent wear-resistance under conditions. Best-selling bearing For corrosive environments	DAIDYNE DDK35
3	Shock absorbers, hydraulic equipment, automotive parts, building materials	Steel-backing	PTFE and others	4	4	5	4	4	5	3	3	5	4	4	4 5	3	5	5	3	3	3	-200 – +280	Offers excellent resistance to wear and heavy loading with boundary lubrication.	DAIDYNE DDK02
4	Shock absorbers, hydraulic equipment, automotive parts, building materials	Steel-backing	PTFE and others	4	4	5	3	4	4	3	3	5	4	4	4 5	3	5	5	3	3	3	-200 – +280	Offers excellent resistance to wear and heavy loading with boundary lubrication.	DAIDYNE DDK06
5	Textile machinery, agricultural machinery, construction equipment, machine tools, office automation equipment, automotive parts	Steel-backing	POM, oil, and others	5	5	5	4	4	4	5	4	4	4	4	4 5	4	5	2	3	3	3	-40 – +120	At medium loads and high speeds	DAIBEST DBB01
6	Office automation equipment, automotive parts, construction materials, textile machinery, agricultural machinery	Solid	POM, oil, and others	5	5	5	3	3	3	5	4	4	4	4	4 5	4	5	2	4	3	3	-40 – +80	Injection molded grades At light loads and high speeds	DAIBEST DBS02
7	Coachwork, agricultural machinery, grass mowers, excavation equipment, geared motors, hoists, automotive parts	Steel-backing	POM and others	2	5	5	2	5	5	2	5	5	2	2	5 5	4	5	3	3	3	3	-40 – +120	Offers a low coefficient of friction and excellent wear-resistance with grease lubrication.	DAIBEST DBX01
8	Copying equipment, textile machinery, optical devices, automotive door hinges	Bronze mesh	PTFE and others	4	3	4	4	4	4	3	3	3	4	4	4 4	4	5	5	5	5	4	-200 – +280	Can be installed with negative clearances	DAIMESH DMM01
9	Office automation equipment, industrial robots, automotive parts, food packaging equipment	Solid	PTFE and others	5	3	4	3	3	3	5	3	4	5	5	4 5	4	5	5	5	5	5	-200 – +280	Offers chemical stability, a low coefficient of friction and excellent wear-resistance under light loads.	DAIFORCE A
10	Textile machinery, office automation equipment, machine tools, automotive parts, conveyor equipment, food processing equipment	Solid	PTFE and others	4	3	4	3	3	3	4	3	4	3	3	4 5	4	5	5	5	5	4	-200 – +280	High-material-strength PTFE	DAIFORCE G
11	Building materials, office automation equipment, textile machinery, electronic devices	Solid	PA and others	3	5	5	3	3	3	3	4	4	3	3	4 5	3	5	5	3 Potentia swellin	3 Potentia swelling	4 (Acidic 2)	-40 – +140	Injection molded grades High strength and electrical conductivity	DAIHILON DHA
12	Trucks, automotive parts, electrical appliances	Solid	Polyester elastomer and others	3	4	4	3	3	3	3	4	4	3	3	4 4	5	5	3	3	3	3	-40 - +60	Injection molded grades Superior flexibility and embedding	DAIHILON DHR
13	Office automation equipment, textile machinery, automotive parts, conveyor equipment, food packaging equipment, seals	Solid	PPS and others	4	4	5	3	3	3	4	4	4	5	5	4 5	3	5	5	5	5	4	-40 – +180	Injection molded grades Superior friction characteristics	DAITHERMO DTP
14	Automotive parts, leisure vehicles, electronic devices	Solid	PEEK and others	4	5	5	3	3	3	4	4	4	4	4	4 5	3	5	5	5	5	4	-150 – +260	Injection molded grades High strength and heat resistance	DAITHERMO DTK

^{*} Performance in acidic or alkaline environments will vary per type, concentration, and temperature. We recommend careful evaluation per trial operation. Please inquire directly for detailed information about specific applications.

Target performance for metal bearings

			Sliding	We	ar resis	stant	Resistan	ice to heav	y loading	Slic	ding sp	eed		Coeffic	cient of	friction	Contam	Effec	ts of a	mbier	nt con	ditions	Operating		
No.	Major applications	Construction	surface materials	Mainte- nance- free	Grease	Bound- aries and fluids	Mainte- nance- free	Grease	Bound- aries and fluids	Mainte- nance- free	Grease	Bound- aries and fluids		Mainte- nance- free	Grease	Bound- aries and fluids	ination accepta nce	In air	In a vacuum	Under- water	In steam	In acidity or alkalinity	temperature ranges in °C	Characteristics	Product
15	Coachwork, conveyor equipment, agricultural machinery, construction equipment, office automation equipment, machine tools, food processing equipment	Solid	Bronze and graphite	4	5	5	5	5	5	3	4	4		3	4	4	4	5	3	5	5	4	-70 – +200	Standard grade of Thermalloy Cutting processes not required	THERMALLOY D type
16	Foundry equipment, heavy industrial machinery, shipbuilding equipment, machine tools, glass, cement, ceramics equipment, dams, sluice gates, water turbines	Solid		5	5	5	5	5	5	3	4	4		3	4	4	5	5	4 (5)	5	5	5	-200 - +700	Countermeasures for temperature, impurities, seawater, or corrosive environments Materials suitable for use in vacuums	THERMALLOY T type
17	Furnace equipment (hearth plates, furnace bearings), high-temperature valves, automotive exhaust system parts	Solid	FeCr, Cu, and others	5	(3)	(3)	5	(3)	(3)	3	(3)	(3)		3	(4)	(4)	3	5	1	(3)	5	5 (Alkaline	(-200) – +700	Superior acid-resistant and wear resistant performance in high-temperature, acidic environments	THERMALLOY TM
18	Machine tools, energy-saving equipment, conveyor equipment, woodworking tools, printing equipment	Steel-backing	Bronze and graphite	4	5	5	5	5	5	3	4	4		3	4	4	4	5	3	3	3	3	-70 – +250	Space-saving, high-load bearing	THERMALLOY BB type
19	Molds and dies, machine tools, conveyor equipment, energy-saving equipment, shipbuilding equipment, foundry equipment	Steel-backing	Bronze and graphite particles	4	5	5	5	5	5	3	4	4		3	4	4	5	5	3	3	3	3	-70 – +250	Can be used directly as a component mechanical part	THERMALLOY PV plate
20	Food processing equipment, general-purpose equipment	Bearings, casings, inner wheels, outer wheels	Bronze and graphite	5	5	5	5	5	5	3	4	4		3	4	4	5	5	3	5	5	4	-50 – +200	Can be used directly as a Maintenance-free, self-aligning bearing unit	THERMALLOY pillow unit
	Shipbuilding equipment, heavy industrial machinery, construction equipment, injection molding equipment, molds and dies	Solid	Copper alloy and embedded solid lubricant	4	5	5	5	5	5	3	4	4		3	4	4	4	5	3	3	4	3	-70 – +250	For general-purpose, medium- and high-load applications	DAISLIDE HA
21	Shipbuilding equipment, heavy industrial machinery	Solid	Copper alloy and embedded solid lubricant	4	5	5	4	4	4	4	4	4		3	4	4	4	5	3	3	4	3	-70 - +250	For general-purpose, medium- and high-load applications	DAISLIDE BA
21	Dams, sluice gates, water turbines, coastal and offshore structures	Solid	Copper alloy and embedded solid lubricant	4	5	5	5	5	5	3	4	4		3	4	4	4	-	_	5	4	3	-40 - +80	For use underwater or in sea water	DAISLIDE SL
	Construction equipment, earthwork and excavation equipment, injection molding equipment	Solid	High-strength copper alloy and embedded solid lubricant	4	5	5	5	5	5	3	4	4		3	4	4	4	5	3	3	4	3	-70 – +250	HA for even heavier-duty use	DAISLIDE KA
22	Compact motors, automotive parts, audiovisual equipment, electronic devices	Solid	Copper or steel, oil, and others	5	5	5	3	3	3	5	5	5		5	5	5	3	5	1	1	1	1	-20 - +80	Superior economic performance Superior friction characteristics	DAILUBO
													F	Figure	s for t	arget p	erform	ance i	ndicat	e: 5 =	exce	llent, 4	= very good, 3 = go	od, 2 = inadequate, 1 = failure	

Figures for target performance indicate: 5 = excellent, 4 = very good, 3 = good, 2 = inadequate, 1 = failure

NB1 and NB2: Excluding some products.

^{*} Performance in acidic or alkaline environments will vary per type, concentration, and temperature. We recommend careful evaluation per trial operation. Please inquire directly for detailed information about specific applications.

Applications for bearings

Bearings and trends in PV values

Shows primarily bearings.

Selecting bearings

Permissible surface pressures vary with sliding velocity.

33

Operating temperature range for bearings Operating temperature ranges vary with sliding velocity and surface pressure.

DAIDYNE DDK05

This completely maintenance-free bearing material comprises a porous copper-tin alloy sintered on a steel backing and a lining made of polytetrafluoroethylene (PTFE) mixed with a special filler. The excellent tribological properties of this lining provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals.

Major applications

General-purpose industrial machinery, hydraulic equipment, electrical appliances, automotive parts, textile machinery, and packaging machinery

Characteristics

- 1) Offers a low coefficient of friction and excellent wear-resistance.
- 2 Eliminates "stick and slip" thanks to a low coefficient of friction.
- ③ Performs well under high loads.
- 4 Performs well through an extended range of operating temperatures.
- (5) Offers superior resistance to chemical substances.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 49.0	137	Below 15.0	60	-200 – 280	0.03 - 0.2	Low

Torget Properties

larg	et Pi	rope	rties								
						Wear	Resist	tance	Load	Resist	ance
S	tructur	е		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	th Ste ackin			PTFE d oth		5	3	4	5	4	4
Slid	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Var	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
4	3	4	5	4	5	3	5	5	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIDYNE DDK35

This completely maintenance-free bearing material comprises a porous copper-tin alloy sintered on a phosphor-bronze backing and a lining made of polytetrafluoroethylene (PTFE) mixed with a special filler. Not only do the excellent tribological properties of this lining provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals, it also features water-resistant properties that make it suitable for underwater applications.

Major applications

General-purpose industrial machinery, food processing equipment, electrical appliances, and automotive parts

Characteristics

- 1) Offers superior resistance to both water and chemical substances.
- ② Features nonmagnetic materials.
- 3 Offers a low coefficient of friction and excellent wear-resistance under.
- 4 Offers a low coefficient of friction eliminates "stick and
- ⑤ Performs well under high loads.
- 6 Performs well through an extended range of operating temperatures.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 49.0	137	Below 15.0	60	-200 – 280	0.03 - 0.2	Low

Torget Properties

larg	et Pi	rope	rties								
						Wear	Resist	tance	Load	Resist	ance
S	tructur	e		ling La		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	osph ze ba			PTFE d oth		5	3	4	5	4	4
Slidi	ing Spe	eed	Frictio	n Coet	ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
4	3	4	5	4	5	3	5	5	5	5	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

Figures for target performance indicate: 5 = excellent, 4 = very good, 3 = good,

Performance in acidic or alkaline environments will vary per type, concentration, and temperature. We recommend careful evaluation per trial operation. Please inquire directly for detailed information about specific applications.

Lead-free bearings

RoHS-compliant bearings

ELV-compliant bearings

own on page 000 Shown on page

How to read target performance charts. • Figures indicate optimal performance under ideal conditions, but actual performance cannot be expected to achieve these levels simultaneously in all

Polymer bearing materials

- •Various grades of DAIHYLON and DAITHERMO are available for each product. Figures indicate performance levels for typical grades. Please inquire directly for detailed information about specific applications.
- The pascal (Pa) is an SI-derived unit used to quantify pressure and stress. One megapascal (MPa) is equivalent to 10.197kgf/cm²

DAIDYNE DDK02

This lead-free, ecofriendly bearing comprises a porous copper-tin alloy sintered on a steel backing and a lining made of polytetrafluoroethylene (PTFE) mixed with a special filler. This bearing demonstrates superior durability along boundary surfaces and under fluid lubrication, and the excellent tribological properties of this lining provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals.

Major applications

Shock absorbers, gear pumps, power steering pumps, other automotive parts, and general-purpose industrial machinery

Characteristics

- Provides performance under high loads that is comparable to metal bearings.
- ② Offers a low coefficient of friction and excellent wear-resistance along boundary surfaces and under fluid lubrication.
- ③ Eliminates "stick and slip" thanks to a low coefficient of friction.
- 4 Offers superior resistance to chemical substances.
- 5 Offers cavitation-resistant performance.
- ⑥ Performs well through an extended range of operating temperatures.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

	ic Load Pa	Sliding m/i	Speed min	Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 49.0	137	Below 180 (Boundary Lubrication)	240 (Boundary Lubrication)	-200 – 280	0.01 – 0.1 (Boundary Lubrication)	Low

Target Properties

larg	et Pi	rope	rties								
						Wear	Resist	tance	Load	Resist	tance
S	tructur	e		ling La		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	th Sto ackin			PTFE d oth		4	4	5	4	4	5
Slid	ing Spe	eed	Frictio	n Coet	ficient	Tolerance	Effec	t of Va	rious A	tmospl	heres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	3	5	4	4	5	3	5	5	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIDYNE DDK06

This lead-free bearing provides superior cavitation-resistant performance and comprises a porous copper-tin alloy sintered on a steel backing and a lining made of polytetrafluoroethylene (PTFE) mixed with a special filler. This bearing demonstrates superior durability along boundary surfaces and under fluid lubrication, and the excellent tribological properties of this lining provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals.

Major applications

Shock absorbers, hydraulic cylinders, general-purpose industrial machinery, and automotive parts

Characteristics

- ① Offers cavitation-resistant performance.
- ② Offers a low coefficient of friction and excellent wear-resistance along boundary surfaces and under fluid lubrication.
- 3 Eliminates "stick and slip" thanks to a low coefficient of friction.
- 4) Performs well under high loads.
- Offers superior resistance to chemical substances.
- ⑥ Performs well through an extended range of operating temperatures.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

Specifi M	c Load Pa	Sliding m/i		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 29.4	137	Below 180 (Boundary Lubrication)	240 (Boundary Lubrication)	-200 – 280	0.01 – 0.1 (Boundary Lubrication)	Low

Target Properties

Iui	geri	•	opc	ucs								
							Wear	Resis	tance	Load	Resist	ance
	Structure Sliding Layer Component						No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	With Steel PTFE Backing and others						4	4	5	3	4	4
Sli	ding S	ре	ed	Frictio	n Coef	fficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubric on	cati Grease and			No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	3		5	4	4	5	3	5	5	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIBEST DBB01

This lead-free, ecofriendly bearing is completely maintenance-free thanks to a porous copper-tin alloy sintered on a steel backing and a lining made of polyoxymethylene (POM), lipophilic fiber, a special filler, and lubricant. The excellent tribological properties of this lining provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals.

Major applications

General-purpose industrial machinery, hydraulic equipment, electrical appliances, and automotive parts

Characteristics

- ① Offers a low coefficient of friction and excellent wear-resistance under.
- Suitable for applications requiring high-speed, operation under.
- Performs well under high loads.
- 4 Provides superior resiliency against misalignment.
- 5 Eliminates "stick and slip" thanks to a low coefficient of friction.
- ⑥ Performs well through an extended range of operating temperatures.

Component materials

Polyoxymethylene (POM) mixed with a special filler, lipophilic fiber, and lubricant

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 29.4	68.6	Below 30	150	-40 – 120	0.02 - 0.15 (Oil Retaining)	Medium

Target Properties

9	.	OPO									
						Wear	Resis	tance	Load	Resist	ance
S	tructur	e		Sliding Layer Component			Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	th Sto ackin)M + d oth		5	5	5	4	4	4
Slid	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
5	4	4	4	4	5	4	5	2	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIBEST DBS02

This lead-free, ecofriendly bearing is completely maintenance-free and made of polyoxymethylene (POM), lipophilic fiber, a special filler, and lubricant. These materials are not only suitable for injection molding of complex shapes but also offer excellent tribological properties.

Major applications

General-purpose industrial machinery, food processing equipment, electrical appliances, automotive parts, and parts for entertainment equipment

Characteristics

- 1) Offers a low coefficient of friction and excellent wear-resistance.
- ② Suitable for applications requiring high-speed, operation under.
- 3 Eliminates "stick and slip" thanks to a low coefficient of friction.
- Suitable for injection molding of complex shapes.
- 5 Provides superior resiliency against misalignment.
- 6 Performs well through an extended range of operating temperatures.

Component materials

Polyoxymethylene (POM), lipophilic fiber, a special filler, and lubricant

Characteristics

	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 4.9	Below 9.6	Below 20	60	-40 – 80	0.02 - 0.15 (Oil Retaining)	Medium

Target Properties

rarg	et Pi	ope	rues								
						Wear	Resist	tance	Load	Resist	ance
S	tructur	e		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	Solid			OM + d oth		5	5	5	3	3	3
Slidi	ing Spe	eed	Friction Coefficient		ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In	In Vacuum	In Water	In Vapor	In Acid or Alkali
5	4	4	4	4	5	4	5	2	4	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

RoHS ELV

Shown on page 082

DAIBEST DBX01

This lead-free, ecofriendly bearing materials are filled with lubricant during installation, after which periodic maintenance is enough to guarantee an extended service life even under heavy loads. They comprise a porous copper-tin alloy sintered on a steel backing and a lining primarily made of polyoxymethylene (POM). Indented lubricant reservoirs enable this lining to provide optimal utilization of the strength, dimensional stability, and other characteristics of the metals.

Major applications

General-purpose industrial machinery, heavy-duty machinery and equipment, mechanical plants and facilities, and automotive parts

Characteristics

- 1) Performs well at high speeds and under high loads.
- ② Provides excellent durability thanks to its ability to retain lubricant.
- ③ Offer a low coefficient of friction and excellent wear-resistance.
- 4 Performs well through an extended range of operating temperatures.
- 5 Provides superior resiliency against misalignment.

Component materials

Polyoxymethylene (POM) mixed with a special filler

Characteristics

	ic Load Pa	Sliding m/i	Speed min	Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 49.0	137	Below 60 (Grease lubrication)	Above 90 (Fluid lubrication)	-40 – 120	0.01 - 0.15 (Grease lubrication)	Medium

Target Properties

iary	larget Froperties													
						Wear	Resist	tance	Load	Resist	ance			
S	Structure Sliding Layer Component					No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid			
With Steel Backing POM and others						2	5	5	2	5	5			
Slid	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres			
No Lubricati on	No Lubricati Grease Boundary Lubricati Grease and Lubricati Grease and		of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali						
2	5	5	2	5	5	4	5	2	3	3	3			

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIMESH DMM01

This completely maintenance-free bearing material comprises a copper-tin alloy mesh and a lining made of polytetrafluoroethylene (PTFE) mixed with a special filler. The flexible structure enables installation with negative clearances, thereby completely eliminating any play between the axle and the bearing.

Major applications

General-purpose industrial machinery, electrical appliances, automotive parts, and the aerospace industry

Characteristics

- ① Offers the flexibility needed for superior formability.
- 2 Can be installed with negative clearances.
- 3 Offers a low coefficient of friction and excellent wear-resistance with maintenance-free operation.
- Eliminates "stick and slip" thanks to a low coefficient of friction.
- 5 Performs well under high loads.
- ⑥ Performs well through an extended range of operating temperatures.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 19.6	49	Below 6	20	-200 – 280	0.04 – 0.15	Low

Target Properties

						Wear	Resis	tance	Load	Resist	ance
S	tructur	е		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	With Bronze Mesh Backing			PTFE and others			3	4	4	4	4
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	No ubricati Grease Boundary No Lubricati Grease and Lubricati Grease and		Boundary and	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali		
3	3	3	4 4 4		4	5	5	5	5	4	

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

Pb RoHS ELV

Shown on page 0

Pb RoHS

DAIFORCE A

This lead-free, ecofriendly bearing material comprises polytetrafluoroethylene (PTFE) mixed with a special filler, which gives it a low coefficient of friction and excellent wear-resistance at a relatively light weight. It also demonstrates superior resistance to chemicals and to corrosion, so it can be used with confidence even when immersed in sea water or corrosive fluids. It is compliant with Japan's Food Sanitation Law and other regulations affecting food additives.

Major applications

General-purpose industrial machinery, food processing equipment, electrical appliances, and testing or inspection equipment

Characteristics

- ① Offers a low coefficient of friction and excellent wear-resistance.
- ② Eliminates "stick and slip" thanks to a low coefficient of friction.
- Offers superior resistance to chemical substances and corrosion.
- 4 Provides superior resiliency against misalignment.

Component materials

Polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 2.0	6.9	Below 18	100	-200 – 280	0.04 – 0.18	Medium

Target Properties

rarge	et Pr	ope	rties								
						Wear	Resis	tance	Load	Resist	ance
St	ructur	е		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	lyme nolay			PTFE d oth		5	3	4	3	3	3
Slidir	ng Spe	eed	Friction Coefficient Tolerance Effect of Various				rious A	tmosph	neres		
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
5	3	4	5	4	5	4	5	5	5	5	5

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAIFORCE G

This ecofriendly, lead-free plastic bearing material comprises glass fiber reinforced polytetrafluoroethylene (PTFE) mixed with a special filler. Thanks to this special filler, DAIFORCE G has a low coefficient of friction and excellent wear-resistance at a relatively light weight. It also demonstrates superior resistance to chemicals and to corrosion, so it can be used with confidence even when immersed in sea water or corrosive fluids. It is compliant with Japan's Food Sanitation Law and other regulations affecting food additives.

Major applications

General-purpose industrial machinery, food processing equipment, electrical appliances, and testing or inspection equipment

Characteristics

- Offers a low coefficient of friction and excellent wear-resistance under.
- ② Eliminates "stick and slip" thanks to a low coefficient of friction.
- ③ Offers superior resistance to chemical substances and corrosion.
- ④ Provides superior resiliency against misalignment.
- 5 Offers superior resistance to heavy loading.

Component materials

Glass-fiber-reinforced polytetrafluoroethylene (PTFE) mixed with a special filler

Characteristics

	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 2.9	6.9	Below 15	60	-200 – 280	0.04 - 0.18	Medium

Target Properties

iuig	Ct 1 1	opc	ucs								
						Wear	Resist	tance	Load	Resist	ance
S	tructur	e		ling Lay		on Fluid 4 3 4			No Lubricati on	Grease	Boundary and Fluid
	olyme			PTFE d oth		4	3	4	3	3	3
Slid	ing Spe	eed	Friction Coeffic		ficient	Tolerance Effect of Va			rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
4	3	4	3	4	5	4	5	5	5	5	4

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

RoHS ELV

DAIHYLON DHR

DAIHYLON DHA

This ecofriendly, lead-free plastic bearing material comprises fiber-reinforced nylon (polyamide or PA) mixed with a special filler. It is available in a variety of grades with low coefficients of thermal expansion as well as enhanced strength and tribological properties.

Major applications

General-purpose industrial machinery, architectural materials, textile machinery, electrical appliances, and automotive parts

Characteristics

- ① Offered enhanced strength in fiber-reinforced grades.
- ② Is more heat resistant than polyoxymethylene and suitable for applications in heat of up to 140°C.
- ③ Offers a low coefficient of friction and excellent wear-resistance.
- ④ Suitable for injection molding of complex shapes.

Component materials

Fiber-reinforced nylon (polyamide or PA) mixed with a special filler

Characteristics (DHA01)

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 3.9	6.9	Below 6	30	-40 – 140	0.1 – 0.3	Low

Target Properties (DHA01)

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

iaiy	alget Floperties (DRAUT)											
						Wear	Resist	tance	Load	Resist	ance	
S	tructur	е		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	
	olyme		PA and others			3	5	5	3	3	3	
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres	
No Lubricati on	No Boundary and and		No Lubricati Grease and on Fluid		of Foreign Particles	In	In Vacuum	In Water	In Vapor	In Acid or Alkali		
3	4	4	3	4	5	3	5	5	3 (potential)	3 (potential)	4 (Oxide 2)	

This ecofriendly, lead-free plastic bearing material comprises polyester elastomer mixed with a special filler for excellent flexibility and frictional properties.

Major applications

Trucks, automotive parts, electrical appliances

Characteristics

- ① Offers extremely high flexibility, suitable for use in countermeasures for percussive noise.
- ② Eliminates "stick and slip" thanks to a low coefficient of friction.
- 3 Suitable for injection molding of complex shapes.

Component materials

Polyester elastomer mixed with a special filler

Characteristics (DHR01)

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 2.0	4.9	Below 6	15	-40 – 60	0.1 – 0.3	Medium

Target Properties (DHR01)

						Wear	Resis	tance	Load Resistance			
S	tructur	e		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	
	olyme		Polyester elastomer and others			3	4	4	3	3	3	
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres	
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali	
3	3 4 4 3 4 4		4	5	5	3	3	3	3			

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

PB ROHS ELV

13

Pb RoHS ELV

14

Shown on page 099

DAITHERMO DTP

This ecofriendly, lead-free plastic bearing material comprises polyphenylene sulfide (PPS) mixed with a special filler and is suitable for injection molding of complex shapes. It has tribological properties equivalent to polytetrafluoroethylene (PTFE). It is also available in fiber-reinforced grades with enhanced strength and heat resistance.

Major applications

General-purpose industrial machinery, hydraulic equipment, HVAC equipment, and automotive parts

Characteristics

- 1) Offers an extremely low coefficient of friction.
- ② Eliminates "stick and slip" thanks to a low coefficient of friction.
- 3 Suitable for use in bearings for flexible axles.
- 4 Suitable for injection molding of complex shapes.
- (5) Is more heat resistant than DAIHYLON and suitable for applications in heat of up to 160°C.

Component materials

Fiber-reinforced polyphenylene sulfide (PPS) mixed with a special filler

Characteristics (DTPO2) NB: Carbon fiber reinforced types have a tensile strength of 78 MPa

	c Load Pa	Sliding m/r		Service Temp. Range °C		Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 2.9	6.9	Below 15	60	-40 – 180	0.05 – 0.2	Low

Target Properties (DTP02)

	••••			`							
						Wear	Resis	tance	Load	Resist	ance
S	tructur	e		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	olyme onola		PPS	and o	thers	4	4	5	3	3	3
Slidi	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
4	4	4	5	4	5	3	5	5	5	5	4

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAITHERMO DTK

This lead-free, ecofriendly bearing material comprises polyether ether ketone (PEEK), a super engineering plastic. PEEK exhibits excellent heat resistance for a thermoplastic and when mixed with fiber reinforcing and a special filler, offers resistance to both heat and chemicals, high strength, and superior tribological characteristics.

Major applications

Brake, automatic transmission, and other automotive parts, HVAC equipment

Characteristics

- ① Exhibits superior heat resistance up to 260°C.
- ② Available in fiber-reinforced grades and other grades offering strength equivalent to aluminum alloys.
- 3 Offers superior resistance to chemical substances.
- 4 Suitable for injection molding of complex shapes.

Component materials

Fiber-reinforced polyetheretherketone (PEEK) mixed with a special filler

Characteristics (DTK04)

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 3.9	6.9	Below 12	60	-40 – 260	0.1 – 0.3	Low

Target Properties (DTK04)

larg	et Pi	rope	rties	(DTKC	14)						
	Structure Polymer monolaye					Wear	Resist	tance	Load	Resist	ance
S	Polymer monolayer Sliding Speed		Sliding Layer Component			No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
Po	olyme onola	er yer		PEEK d oth		4	5	5	3	3	3
Slid	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on		Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
4	4	4	4	4	5	3	5	5	5	5	4

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

Pb RoHS ELV

15

Not available for all products Pb RoHS ELV

16

THERMALLOY D type

These maintenance-free metal bearings are made of a bronze base metal embedded with graphite solid lubricants distributed minutely and evenly throughout. The D type is suitable for use under a wide range of conditions and is the general-purpose grade of the THERMALLOY series. Standard specification Thermalloy bearings are always kept inventory. Bearings made of lead-bronze alloy are not compliant with either RoHS or ELV and are produced on order only.

Major applications

General-purpose industrial machinery, architectural materials, textile machinery, electrical appliances, and automotive parts

Characteristics

- ① Offered enhanced strength in fiber-reinforced grades.
- ② Is more heat resistant than polyoxymethylene and suitable for applications in heat of up to 140°C.
- Offers a low coefficient of friction and excellent wear-resistance.
- 4 Suitable for injection molding of complex shapes.

Component materials

Fiber-reinforced nylon (polyamide or PA) mixed with a special filler

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 14.7	29.4	Below 6	60	-70 – 200	0.1 – 0.25	Medium

Target Properties

rarg	et Pi	ope	rties								
						Wear	Resis	tance	Load	Resist	tance
S	Structure			Sliding Layer Component			Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
Solid Bronze+Gra				phite	4	5	5	5	5	5	
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	No Lubricati Grease Boundary		No Lubricati Grease Boundary and Fluid		of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali	
3	4	4	3	3 4 4			5	3	5	5	4

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

.

THERMALLOY T type

These maintenance-free metal bearings are made of a variety of base metals embedded primarily with graphite solid lubricants distributed evenly throughout. The T type is suitable for use under an even wider range of conditions and is a special-purpose grade of the THERMALLOY series. Available base metals include bronze, steel, nickel, and other materials. And with a variety of solid lubricants to choose from, these bearings can be designed to meet a wide range of applications. Put these bearings to work solving any problem imaginable.

Bearings made of lead-bronze alloy are not compliant with either RoHS or ELV.

Major applications

General-purpose industrial machinery, food equipment, temporary support for steel-framed structures

Characteristics

- ① Offers a low coefficient of friction and excellent wear-resistance under.
- ② Demonstrates high resiliency against intrusion of foreign matter.
- ③ Offers superior corrosion resistance.
- Performs well through an extended range of operating temperatures. (-200 to +700°C, per base metal)
- 5 Offers superior electrical conductivity.

Component materials

Various base metals and embedded solid lubricant

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 14.7	49	Below 6	60	-200 – 700	0.05 - 0.25 (Boundary Lubrication)	High

Target Properties

larg	et Pi	rope	rties								
						Wear	Resist	tance	Load	Resist	ance
S	Structure Slidin Com					No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	Solid All types of allogand graphite						5	5	5	5	5
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	ubricati Grease and			Grease	Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	4	4	3	3 4 4			5	4 (5)	5	5	5

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

44

Metallic bearing

materials

_ead-free bearings

RoHS-compliant bearings

ELV-compliant bearings

own on page 000 Shown on page

• Figures indicate optimal performance under ideal conditions, but actual

performance cannot be expected to achieve these levels simultaneously in all

 Various grades of THERMALLOY, DAISLIDE, and DAILUBO are available for each product. Figures indicate performance levels for typical grades. Please

The pascal (Pa) is an SI-derived unit used to quantify pressure and stress.

Figures for target performance indicate: 5 = excellent, 4 = very good, 3 = good,

Performance in acidic or alkaline environments will vary per type, concentration, and temperature. We recommend careful evaluation per trial operation. Please

One megapascal (MPa) is equivalent to 10.197kgf/cm²

inquire directly for detailed information about specific applications.

How to read target performance charts.

[Note 1]

[Note 2]

THERMALLOY TM

This is a lead-free, ecofriendly bearing made of a chromium-steel alloy and suitable for use in high-temperature, acidic environments.

Major applications

General-purpose industrial machinery, heat-treatment ovens, smoke exhaust equipment, and automotive parts

- 1) Provides excellent resistance to acid and corrosion in high-temperature, acid environments up to 700°C.
- 2 Features excellent wear resistance.
- 3 Offers superior resistance to seizing.
- 4 Won't damage the axle it bears.

Component materials

FeCr, Cu, and embedded solid lubricant

Characteristics

Specifi M Normal	Pa	Sliding m/r Normal	Service Temp. Range °C Min. to Max.	Friction Coefficient µ	Tolerance of Foreign Particles
Below 19.6		Below 1.2	(-200) – 700	0.5 (@500°C)	Low

Torget Properties

iarg	larget Properties											
						Wear	Resist	tance	Load Resistance			
S	structur	е	Sliding Layer Component			No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	
	Solid			Cr+C		5	(3)	(3)	5	(3)	(3)	
Slid	ing Sp	eed	Friction Coefficient			Tolerance	Effec	t of Var	ious A	tmospl	neres	
No Lubricati on	Grease	Boundary and Fluid	undary No and Lubricati Grease		Boundary and Fluid	of Foreign Particles	In	In Vacuum	In Water	In Vapor	In Acid or Alkali	
3	(3)	(3)	3	(4)	(4)	3	5	1	(4)	5	3 (Alkali3)	

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

THERMALLOY BB type

These maintenance-free metal bearings are made of a bronze base metal embedded with graphite solid lubricants distributed minutely and evenly throughout. BB type bearings are made with thin-walled steel-backed

Bearings made of lead-bronze alloy are not compliant with either RoHS or ELV.

Major applications

General-purpose industrial machinery, printing equipment

Characteristics

- 1) Offers a low coefficient of friction and excellent wear-resistance.
- 2 Demonstrates high resiliency against intrusion of foreign matter.
- 3 Offers superior corrosion resistance.
- 4 Performs well through an extended range of operating temperatures.

Component materials

Bronze and embedded solid lubricant

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 19.6	49.0	Below 6	60	-70 – 250	0.05 - 0.25 (Boundary Lubrication)	Medium

Target Properties

	Structure With Steel					Wear	Resist	tance	Load Resistance		
S	tructur	е		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	th Ste ackin		Bronz	e+Gra	phite	4	5	5	5	5	5
Slidi	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	4	4	3	4	4	4	5	3	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

THERMALLOY PV plate

These maintenance-free metal bearings are made of a bronze base metal embedded with graphite solid lubricants distributed evenly throughout. PV plate bearings are made with thick-walled steel-backed plate. Standard specification THERMALLOY bearings are always kept inventory.

Major applications

General-purpose industrial machinery, food equipment, temporary support for steel-framed structures

Characteristics

- 1) Offers a low coefficient of friction and excellent wear-resistance.
- 2 Demonstrates high resiliency against intrusion of foreign matter.
- ③ Offers superior corrosion resistance.
- 4 Performs well through an extended range of operating temperatures.
- ⑤ Offers superior electrical conductivity.

Component materials

Bronze and embedded solid lubricant

Characteristics

Sp		c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Nor	mal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Bel 19	ow 0.6	49.0	Below 6	30	-70 – 250	0.05 – 0.25 (Boundary Lubrication)	High

Target Properties

9	o	OPO									
						Wear	Resist	tance	Load	Resist	ance
S	tructur	re		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	th Ste ackin		B Graph	ronze iite Pai		4	5	5	5	5	5
Slid	ing Spe	eed	Frictio	n Coef	ficient	Tolerance	Effec	t of Var	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	4	4	3	4	4	5	5	3	3	3	3

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

THERMALLOY pillow unit

THERMALLOY metal bearings are made of a bronze base metal embedded with graphite solid lubricants distributed minutely and evenly throughout, and have piro units applied to the bearing section. They offer an extended service life in applications for which ordinary bearings cannot be used. Standard specification THERMALLOY bearings are always kept in inventory. These bearings are produced on order and the quantity of solid lubricant embedded in the base metal can be adjusted to suit any application.

Major applications

General-purpose industrial machinery, conveyor equipment

Characteristics

- ① Offers a low coefficient of friction and excellent wear-resistance.
- 2 Demonstrates high resiliency against intrusion of foreign matter.
- 3 Offers superior corrosion resistance.
- 4 Performs well through an extended range of operating temperatures.
- ⑤ Offers superior electrical conductivity.

Component materials

Bronze and embedded solid lubricant

Characteristics

Specifi M	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 14.7	29.4	Below 15	30	-50 – 200	0.1 – 0.3	High

Torget Properties

iarg	et Pi	rope	rties								
						Wear	Resist	tance	Load	Resist	ance
S	tructur	е		ling Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid
	Bearing box and uter and inner ring		Bronz	e+Gra	phite	4	5	5	5	5	5
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres
No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali
3	4	4	3	4	4	5	5	3	5	5	4

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

DAISLIDE bearing are made primarily of copper alloy embedded with solid lubricant plugs. Standard specification DaiSlide bearings are available in a wide range of sizes. Grades that are suitable for us underwater and in sea water are also available.

BA- and SL-grade bearings are not compliant with either RoHS or ELV.

Major applications

General-purpose industrial machinery, heavy industrial machinery

Characteristics

- 1) Offers excellent wear-resistance and under boundary lubrication or dry conditions.
- 2 Performs well under high loads.

Component materials

Copper alloy and embedded solid lubricant (plug)

DAISLIDE HA solid bearings for medium- and heavy-loads

	c Load Pa	Sliding m/i		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles
Below 19.6	49.0 (98.0)	Below 6	30	-70 – 250	0.05 – 0.3 (Boundary Lubrication)	Medium

DAISLIDE KA solid bearings for even heavier loads than suitable for HA

Specifi M	c Load Pa	Sliding m/ı		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign	
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles	l
	73.0 (118)	Below 6	15	-70 – 250	0.05 – 0.3 (Boundary Lubrication)	Medium	

Figures shown in parenthesis are for static surface pressure when there is no sliding or when sliding under extremely low speeds.

Target Properties

larg	arget Properties											
						Wear	Resis	tance	Load Resistance			
S	tructur	е		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	
	Solid		Copper Alloy +Solid Lubricant Burying Typeolid			4	5	5	5	5	5	
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres	
No Lubricati on	Lubricati Grease and Lubricati Grease and			of Foreign Particles	In Air	In Vacuum	In Water	In Vapor	In Acid or Alkali			
3	4	4	3	4	4	4	5	3	3	4	3	

DAILUBO

Oil-impregnated sintered copper or steel bearings with solid lubrication or oil.

Major applications

Electrical appliances, and automotive parts

Characteristics

- (1) Offers a low coefficient of friction and excellent wear-resistance.
- 2 Eliminates "stick and slip" thanks to a low coefficient of friction.

Component materials

Cu-Sn-C and Fe-Sn-C

Characteristics

	c Load Pa	Sliding m/r		Service Temp. Range °C	Friction Coefficient	Tolerance of Foreign	
Normal	Max.	Normal	Max.	Min. to Max.	μ	Particles	
Below 2.0	9.8	Below 60	200	-20 – 80	0.01 - 0.15 (Oil Retaining)	Low	

Target Properties

	an got i ropoi noo											
						Wear	Resis	tance	Load Resistance			
S	Structur	e		ing Lay		No Lubricati on	Grease	Boundary and Fluid	No Lubricati on	Grease	Boundary and Fluid	
	Solid		Copper or steel, oil, and others			5	5	5	3	3	3	
Slid	ing Spe	eed	Friction Coefficient			Tolerance	Effec	t of Va	rious A	tmospl	neres	
No Lubricati on	No Boundary and and		No Lubricati Grease and Fluid		Boundary and	of Foreign Particles	In	In Vacuum	In Water	In Vapor	In Acid or Alkali	
5	5	5	5	5	5	3	5	1	1	1	1	

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

Steel bushing (lubricated metal)

Made of steel or stainless steel without any slide bearing alloys, this wound bushing is manufactured using an ecofriendly process and produces relatively few shavings compared with cutting pipe stock, thereby providing improved material yield. Also suitable for use in non-bearing applications, too. Surface treatments for enhancing tribological properties are also available.

Major applications

General-purpose industrial machinery, hydraulic equipment, automotive parts, vaporizer parts

Characteristics

- 1) Enhanced material yield.
- ② Reduced production of shavings.
- 3 Heat and surfaces treatments available.

Component materials

All types of steel and copper alloys

Metal bushing (lubricated metal)

The use of bimetal or trimetal linings made of aluminum and copper alloys on a steel backing provides these lubricated metal bearings with good mechanical strength and makes them suitable for high-speed, high-load applications with proper lubrication. Choose from a wide variety of materials to match your application, operating conditions, and lubrication requirements to achieve desired load-bearing performance, which can be further enhanced through modified design of lubricating grooves and bearing structure. In some cases, maintenance-free (metal polymer) bearings can be applied in lubricated environments.

Major applications

Engine bearings, automotive parts, general-purpose industrial machinery, food processing equipment, electrical appliances

Characteristics

- 1 Enhanced material yield.
- ② Reduced production of shavings.
- (3) Heat and surfaces treatments available.

Geometry and dimensions

In addition to conventional round bushings, we also offer slotted, grooved, notched, and other types of bushing

5=Excellent 4=Very good 3=Good 2=Fair 1=Poor

Compact assemblies

These composite products are subassemblies comprising a Daido Metal polymer bearing and housing material of suitable functionality for both load-bearing performance and structural properties that suit the application. The Daido in-house assembly process also achieves a very high precision for the inner diameter. Daido's deep-draw stamping technology is also available for manufacturing housing parts.

Major applications

Shock absorbers, automotive parts, general-purpose industrial machinery, electrical appliances

Characteristics

- 1) Dimensional accuracy of inner diameters is assured by precision assembly.
- ② Assembled products with load-bearing performance and structural properties that suit the application.
- ③ Reduces logistical costs.
- 4 Quality assurance for the entire product.
- ⑤ Suitable for use with draw-stamped housing parts.

Special geometries

Insert-molded parts

These composite products are subassemblies comprising a Daido Metal polymer bearing and injection-molded housing material of suitable functionality for both load-bearing performance and structural properties that suit the

The Daido in-house insert-molding process also achieves a very high precision for the inner diameter. Effective as a countermeasure against problems related to ejecting parts and assuring inside diameters when inserted into resin.

Major applications

Automotive parts, general-purpose industrial machinery, electrical appliances

Characteristics

- ① Dimensional accuracy of inner diameters is assured by precision assembly.
- ② Effective for assuring inside diameters formed by conventional insertion and ejection load.
- 3 Assembled products with load-bearing performance and structural properties that suit the application.
- 4 Reduces logistical costs.
- 5 Quality assurance for the entire product.

Daido technology for deep-draw stamping and machining are suitable for manufacturing bearing with complex geometries. By using bearing materials in the sliding sections of bearings with complex geometries, a single product can be designed to perform multiple functions.

Major applications

Hydraulic pumps, automotive parts, general-purpose industrial machinery

Characteristics

- 1) Can be manufactured in complex geometries.
- 2 Can perform multiple bearing and housing functions with a single product.

Modular products

Customized bearing designs

These composite products are assembled at Daido Metal and feature the load-bearing performance of our metal polymer bearings as well as structural materials for the bearing housing, as best suits the application. Feel free to consult with us on the design and manufacture of bearings that meet your requirements for geometry, housing materials, and application.

nown on page 000 Shown on page

MATERIALS & SIZE

Pol	ymer bearing materials
1	DAIDYNE DDK05 54
2	DAIDYNE DDK35 66
3	DAIDYNE DDK02 68
4	DAIDYNE DDK06 69
5	DAIBEST DBB01 70
6	DAIBEST DBS02 76
7	DAIBEST DBX01 · · · · 82
8	DAIMESH DMM01 · · · · 88
9	DAIFORCE A 92
10	DAIFORCE G · · · · · 94
11	DAIHYLON DHA 96
12	DAIHYLON DHR · · · · 97
13	DAITHERMO DTP 98
14	DAITHERMO DTK 99
Me	tallic bearing materials
15	THERMALLOY D type ····102
16	THERMALLOY T type ·····108
17	THERMALLOY TM · · · · · · · 110
18	THERMALLOY BB type ···111
19	THERMALLOY PV plate ···115
20	THERMALLOY pillow unit · · · 118
21	DAISLIDE 122
22	DAILUBO 140
23	Steel bushing (lubricated metal) · · · · 141
24	Metal bushing (lubricated metal) · · · 142
Мо	dular products

25 Compact assemblies · · · · · 145

Polymer bearing materials DAIDYNE DDK05

This product is an environmentally friendly "Lead free bearing."

This compound bearing, a "perfect oilless bearing" that does not require any lubricant at all uses polytetrafluoroethylene (PTFE) resin, has excellent low friction characteristics and also optimizes metal properties such as strength and dimensional stability.

Features

- 1) The bearing surface has such low a coefficient of static and dynamic friction that the surface runs smoothly without lubrication, and in addition, the so-called stick and slip phenomenon is eliminated. The bearing can be used in oil as well.
- ② The operating temperature range extends from -200°C to +280°C.
- 3 Adaptable to operations under high-load, impact load, intermittent operation and reciprocating
- 4 Free from electrostatic induction (When installed, each bearing has an electrical resistance of 1Ω to 10Ω per 1 cm² wide contact area.)
- (5) The bearing surface is highly resistant to most industrial chemicals and solvents such as petroleum and alcohol.
- (6) The bearing will not damage the surface of engaging component (shaft).
- (7) Extended service life.
- ® The bearing is light and thin (max. 3 mm thick), requiring little space and permits compact equipment design.
- (9) The bearing minimizes operating noise.

Major Superior Points to Roller Bearing

- ① DDK05 bearing is free from the skew problem.
- 2 DDK05 bearing can also be used for sliding motion in the axial direction.
- 3 DDK05 bearing allows very compact equipment design that does not occupy wide space.
- 4 In general the bearing price is competitive compared to rolling element bearings.
- (5) The bearing exhibits exceptional resistance against fretting corrosion.

Superior Points to Roller Bearing

- 1 Permitted bearing pressure is high.
- (2) The rolling element bearings are inferior to Daido plain bearings in conditions of high-load, low speed operation, reciprocating and intermittent motion where boundary lubrication condition cannot be assured and further at high temperature (+280°C) or low temperature (-200°C).
- ③ DDK05 bearing can be used in various liquids and gases, or in a vacuum.
- (4) Standard bearings are stocked and are available for quick delivery.

Physical Characteristics (Typical Values)

Compressive Strength (MPa)	304
Coefficient of Linear Thermal Expansion (10 ⁻⁶ /°C)	11 (direction parallel to bearing face), 30 (thickness direction)
Heat Transfer Coefficient (W/m-k)	42
Service Temperature Limit (°C)	-200~+280
Friction Coefficient	0.04 to 0.1 (below 6 m/min, 3.5 to 55 MPa)
Friction Coefficient	0.06 to 0.18 (6 to 300 m/min, below 3.5 MPa)

Friction properties/characteristics of DDK05

The graph shows that during the running in stage, part of the surface layer rapidly transfers to the shaft surface to make to the irregularity flat and form a smooth low-wear and low-friction surface. During operation when the surface layer consisting of PTFE mixture becomes thinner friction between the metals of the bearing and the shaft temporarily occurs. Then the PTFE mixture expands due to the heat generated by the friction and the mixture is pushed out from the porous intermediate layer and supplied to the bearing surface very slowly. Therefore no wear occurs on the shaft.

<Table 1> Wear of DDK05

Designing DDK05

1) PV value and wear

The service life of DDK05 is determined primarily by bearing load and PV value. The term PV value refers to the product of a pressure (P) in MPa and a velocity (V) in m/min. A bearing with a PV value of 206 MPa m/min can only operate for short periods of time. The maximum PV value for a bearing that be used for continuous operation is 103 MPa m/min. Testing has shown that the rate of wear to a DDK05 after breaking in is roughly proportional to its PV value up to 0.04-0.05 mm of wear. Fig. 1 shows the relationship between service life and PV value.

Bushings (unidirectional loading)

Service life in hours (H) =
$$\frac{39 \times 10^3 \times f \times m}{PV}$$
 - C

NB: The term "unidirectional loading" refers to bearing loads applied to a fixed bushing by an axle that is either rotating or sliding.

Bushings (rotational loading)

Service life in hours (H) =
$$\frac{78 \times 10^3 \times f \times m}{PV}$$
 - C

NB: The term "rotational loading" refers to bearing loads applied to a rotating bushing by a fixed axle.

Thrust washer

Service life in hours (H) =
$$\frac{25 \times 10^{3} \times f \times m}{PV}$$
 - C

NB: Refer to Table 2 on page 56 and Table 3 on page 57 for values of the coefficients f, m, and C.

Prior to breaking in the bearing

Photographic cross-section of a DDK05 after breaking in and operating for a certain period of time.

3 Formula for calculating (PV value in MPa·m/min)

For rotational loading

Bushing	Thrust washer
V=πdN/10 ³	$V=\pi(D+d)N/2\times10^{3}$
P=W/Ld	$P=W/(D^2-d^2)\pi \times 4$
PV=πWN/10 ³ L	PV=2WN/10 ³ ·(D-d)

V: rotating speed in m/min,

- π : ratio of the circumference to the diameter,
- d:inner diameter in mm
- D: outer diameter in mm,
- P: surface pressure in MPa

W: load in N,

N: rotational speed in rpm

NB1: During oscillating movement, the articulation θ in degrees (°) is calculated using a rotational speed N of 2θ C/360, where C is the cycles per minute.

NB2: During axial movement. V is the sliding speed in meters per minute.

Fig. 1: Service life and PV value

4 Load-bearing capacity (U)
Although actual load-bearing capacity with vary with load characteristics, the maximum load that can be supported with DDK05 is as follows.

<Table1> Allowable load (U)

Types of loading	U MPa
 Static loading with virtually no movement or an extremely slow movement, where V	137.0
② Rotational or oscillating movement, provided that the load affecting the DDK05 does not move.	55.0
③ When the DDK05 is subject to alternating or variable loads, the allowable load varies per the number of changes in loading that occur while the bearing is in use.	
(a) 10 ⁵ times or less (b) 10 ⁷ times or more	27.5 13.7

(5) Operating factors (f)

<Table 2> Operating factors (f)

Operating conditions	Housing properties	Α	mbient '	tempera	ature of	axle in °	C
operating conditions	riodaling properties	25	60	100	150	200	280
	For material with ordinary heat conductivity	1	0.8	0.6	0.4	0.2	0.1
Continuously dry conditions	For material with poor heat conductivity	0.5	0.4	0.3	0.2	0.1	_
Continuously dry Conditions	For non-metallic housings with poor heat conductivity	0.3	0.3	0.2	0.1	-	-
Intermittently dry conditions (No more than two minutes of operation, followed by two minutes or more of rest.)	For material with ordinary heat conductivity	2	1.6	1.2	0.8	0.4	0.2
When continuously immersed in	2	1.5	0.6	_	-	-	
When alternating between imme	0.2	0.1	_	_	_	_	
When continuously immersed in fluid	1.5	1.2	0.9	0.6	0.3	0.1	
	the second secon	1	_				

Axle (mating surface) surface factor (m) and service life correction factor (C) The surface factor (m) is applicable in cases where

the mating surface roughness is equivalent or better to the former Rmax 3.2 µm. In many cases, the surface finish is rougher than this and will require additional polishing to ensure the necessary surface quality.

<Table3> Axle (mating surface) surface factor (m) and service life correction factor (C)

Material	Axle surface factor (m)	Service life correction factor (C)		
Steel				
Soft steel	1	200		
Hardened steel	1	200		
Nitrided steel	1	200		
Cast iron	1	200		
Stainless steel	2	200		
Thermal spray stainless steel	1	200		
Non-ferrous				
Anodized aluminum	0.4	200		
Hard anodized aluminum (0.025-mm coating)	3	600		
Bronze and copper alloys	0.2	200		
Galvanized steel (0.013-mm coati	ng or more	e)		
Hard chromium	2	600		
Lead	1.5	600		
Tin-nickel	1.2	600		
Nickel	0.2	600		
Cadmium	0.2	600		
Zinc	0.2	600		
Thermal spray tungsten carbide	3	600		
Phosphate-coated steel	0.2	300		

NB: Refer to Fig. 11 on page 152 for the relationship between mating surface roughness and wear.

K5B DDK05 Bushing (Bushing Inner Diameter: 3 to 28 mm)

Designation of Part Number

Please specify by part number.

																		(1	(Unit : mm)
	Recommended Dime	ension Mating Part	Bushing I	Dimensions	3														
Bushing I.D.	Houshing	Shaft	O.D.	Wall							Part Nun	nber & Bu	shing Len	gth Tolera	nce _{- 0.3}				Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	3	4	5	6	7	8	10	12	15	20	25	30	35	40	
3	Φ5H7 ^{+0.012}	φ3 ^{-0.025} -0.035	Φ5 ^{+0.047} _{+0.017}	$1.0_{-0.025}^{$	0303	0304	0305	0306											3
4	Φ6H7 ^{+0.012}	$\phi 4 \begin{array}{c} -0.025 \\ -0.037 \end{array}$	Φ6 ^{+0.047} _{+0.017}	$1.0_{-0.025}^{$	0403	0404	0405	0406		0408									4
5	Φ7H7 ^{+0.015}	$\phi_5^{-0.025}_{-0.037}$	φ7 ^{+0.053} _{+0.023}	$1.0_{-0.025}^{$	0503	0504	0505	0506		0508									5
6	Φ8H7 ^{+0.015}		Φ8 ^{+0.053} _{+0.023}	$1.0_{-0.025}^{0}$	0603	0604	0605	0606	0607	0608	0610	0612							6
7	Φ9H7 ^{+0.015}	ϕ 7 $^{-0.025}_{-0.040}$	Φ9 ^{+0.053} _{+0.023}	$1.0_{-0.025}^{0}$			0705	0706	0707	0708	0710	0712							7
8	Φ10H7 ^{+0.015}	$\phi 8 \begin{array}{c} -0.025 \\ -0.040 \end{array}$	Φ10 ^{+0.055} _{+0.025}	$1.0_{-0.025}^{0}$			0805	0806	0807	0808	0810	0812	0815						8
9	Φ11H7 ^{+0.018}	$\phi 9 \begin{array}{l} -0.025 \\ -0.040 \end{array}$	Φ11 ^{+0.060} _{+0.030}	$1.0_{-0.025}^{0}$				0906			0910								9
10	Φ12H7 ^{+0.018}	ϕ 10 $^{-0.025}_{-0.040}$	Φ12 ^{+0.060} _{+0.030}	$1.0_{-0.025}^{0}$				1006	1007	1008	1010	1012	1015	1020					10
12	Φ14H7 ^{+0.018}	ϕ 12 $^{-0.025}_{-0.043}$	Φ14 ^{+0.060} _{+0.030}	$1.0_{-0.025}^{0}$				1206		1208	1210	1212	1215	1220					12
13	Φ15H7 ^{+0.018} ₀	0.0.0	Φ15 ^{+0.063} _{+0.033}	$1.0_{-0.025}^{0}$						1308	1310	1312	1315	1320					13
14	Φ16H7 ^{+0.018} ₀									1408	1410	1412	1415	1420					14
15	Φ17H7 ^{+0.018}	ϕ 15 $^{-0.025}_{-0.043}$	φ17 ^{+0.073} _{+0.038}							1508	1510	1512	1515	1520	1525				15
16	Φ18H7 ^{+0.018}		Φ18 ^{+0.073} _{+0.038}								1610	1612	1615	1620	1625				16
17	Φ19H7 ^{+0.021} ₀		Φ19 ^{+0.081} _{+0.046}	$1.0_{-0.025}^{$							1710		1715						17
18	Φ20H7 ^{+0.021}	ϕ 18 $^{-0.025}_{-0.043}$	Φ20 ^{+0.081} _{+0.046}								1810	1812	1815	1820	1825	1830			18
19	Φ22H7 ^{+0.021} ₀		Φ22 ^{+0.081} _{+0.046}	$1.5_{-0.030}^{0}$							1910		1915	1920					19
20	Φ23H7 ^{+0.021} ₀	ϕ 20 $^{-0.025}_{-0.046}$	Φ23 ^{+0.081} _{+0.046}	$1.5_{-0.030}^{0}$							2010	2012	2015	2020	2025	2030			20
22	Φ25H7 ^{+0.021} ₀	ϕ 22 $^{-0.025}_{-0.046}$	Φ25 ^{+0.086} _{+0.051}	$1.5_{-0.030}^{0}$							2210	2212	2215	2220	2225	2230			22
24	Φ27H7 ^{+0.021}	ϕ 24 $^{-0.025}_{-0.046}$	Φ27 ^{+0.086} _{+0.051}	1.5 _0.030									2415	2420	2425	2430			24
25	Φ28H7 ^{+0.021} ₀	ϕ 25 $^{-0.025}_{-0.046}$	Φ28 ^{+0.093} _{+0.056}	$1.5_{-0.030}^{0}$							2510	2512	2515	2520	2525	2530	2535		25
26	Φ30H7 ^{+0.021} ₀	ϕ 26 $^{-0.025}_{-0.046}$	Φ30 ^{+0.115} _{+0.075}										2615	2620	2625	2630			26
28	Φ32H7 ^{+0.025} ₀	ϕ 28 $^{-0.025}_{-0.046}$	Φ32 ^{+0.115} _{+0.075}	2.0 _0_0								2812	2815	2820	2825	2830			28

Designation of Part Number

Please specify by part number.

	Recommended Dime	nsion Mating Part	Bushing	Dimensions	3														
Bushing I.D.	Houshing	Shaft	0.0	Wall							Part Num	nber & Bus	shing Len	gth Tolera	nce _{- 0.3}				Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	12	15	20	25	30	35	40	50	60	70	80	90	95	100	
30	Φ34H7 ^{+0.025}	ϕ 30 $^{-0.025}_{-0.046}$	ϕ 34 $^{+0.115}_{+0.075}$	2.0 _0_0	3012	3015	3020	3025	3030	3035	3040	3050							30
31	Φ35H7 ^{+0.025}	ϕ 31 $^{-0.025}_{-0.050}$	ϕ 35 $^{+0.115}_{+0.075}$	2.0 0 -0.030		3115		3125	3130		3140								31
32	Φ36H7 ^{+0.025}	ϕ 32 $^{-0.025}_{-0.050}$	ϕ 36 $^{+0.115}_{+0.075}$	$2.0_{-0.030}^{$		3215	3220	3225	3230		3240								32
35	Φ39H7 ^{+0.025}	ϕ 35 $^{-0.025}_{-0.050}$	ϕ 39 $^{+0.115}_{+0.075}$	$2.0_{-0.030}^{$	3512	3515	3520	3525	3530	3535	3540	3550							35
38	Φ42H7 ^{+0.025}	ϕ 38 $^{-0.025}_{-0.050}$	ϕ 42 $^{+0.115}_{+0.075}$	$2.0_{-0.030}^{$			3820	3825	3830	3835	3840								38
40	Φ44H7 ^{+0.025}	ϕ 40 $^{-0.025}_{-0.050}$	Φ44 ^{+0.115} +0.075	2.0 _0_0	4012	4015	4020	4025	4030	4035	4040	4050							40
45	Φ50H7 ^{+0.025}	ϕ 45 $^{-0.025}_{-0.050}$	ϕ 50 $^{+0.115}_{+0.075}$	$2.5_{-0.040}^{$			4520	4525	4530	4535	4540	4550							45
50	Φ55H7 ^{+0.030}	ϕ 50 $^{-0.025}_{-0.050}$	ϕ 55 $^{+0.145}_{+0.095}$	2.5 0 -0.040			5020	5025	5030	5035	5040	5050	5060						50
55	Φ60H7 ^{+0.030}	ϕ 55 $^{-0.025}_{-0.055}$	ϕ 60 $^{+0.145}_{+0.095}$	$2.5_{-0.040}^{$				5525	5530	5535	5540	5550	5560						55
60	Φ65H7 ^{+0.030}	ϕ 60 $^{-0.025}_{-0.055}$	ϕ 65 $^{+0.145}_{+0.095}$	2.5 0 -0.040					6030	6035	6040	6050	6060		6080				60
65	Φ70H7 ^{+0.030}	ϕ 65 $^{-0.035}_{-0.005}$	ϕ 70 $^{+0.145}_{+0.095}$	$2.47_{-0.050}^{0}$					6530		6540	6550	6560						65
70	Φ75H7 ^{+0.030}	ϕ 70 $^{-0.035}_{-0.005}$	$\phi75^{+0.145}_{+0.095}$	$2.47_{-0.050}^{0}$					7030	7035	7040	7050	7060	7070	7080				70
75	Φ80H7 ^{+0.030}	$\phi 75 \begin{array}{l} -0.035 \\ -0.005 \end{array}$	ϕ 80 $^{+0.160}_{+0.095}$	$2.47_{-0.050}^{0}$					7530	7535	7540	7550	7560		7580				75
80	Φ85H7 ^{+0.035}	ϕ 80 $^{-0.035}_{-0.005}$	ϕ 80 $^{+0.165}_{+0.100}$	$2.47_{-0.050}^{0}$							8040	8050	8060		8080				80
85	Φ90H7 ^{+0.035}	$\phi 85 {}^{-0.035}_{0}$	ϕ 90 $^{+0.165}_{+0.100}$	$2.47_{-0.050}^{0}$							8540	8550	8560		8580				85
90	Φ95H7 ^{+0.035}	$\phi 90^{\ -0.035}$	ϕ 95 $^{+0.165}_{+0.100}$	2.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							9040	9050	9060			9090			90
100	Φ105H7 ^{+0.035}	ϕ 100 $^{-0.035}_{0}$	ϕ 105 $^{+0.180}_{+0.110}$	$2.47_{-0.050}^{$								10050		10070	10080		10095	100100	100
110	Φ115H7 ^{+0.035}	ϕ 110 $^{-0.035}_{0}$	ϕ 115 $^{+0.180}_{+0.110}$	$2.47_{-0.050}^{0}$								11050		11070			11095	110100	110
120	Φ125H7 ^{+0.040}	ϕ 120 $^{-0.035}_{0}$	ϕ 125 $^{+0.185}_{+0.120}$	$2.47_{-0.050}^{0}$								12050		12070			12095	120100	120
130	Φ135H7 ^{+0.040}	ϕ 130 $^{-0.035}_{-0.005}$	ϕ 135 $^{+0.185}_{+0.120}$	$2.47_{-0.050}^{0}$								13050			13080			130100	130
140	Φ145H7 ^{+0.040}	ϕ 140 $^{-0.035}_{-0.005}$	ϕ 145 $^{+0.185}_{+0.120}$	2.47 0 0 0								14050			14080			140100	140
150	Φ155H7 ^{+0.040}	ϕ 150 $^{-0.035}_{-0.005}$	ϕ 155 $^{+0.205}_{+0.140}$	2.47 0 -0.050								15050			15080			150100	150
160	Φ165H7 ^{+0.040}	ϕ 160 $\frac{-0.035}{-0.005}$	ϕ 165 $^{+0.205}_{+0.140}$	2.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								16050			16080	·		160100	160

*Width tolerance is : ~ID 110 -0.3 OD 120~-0.4

K5F DDK05 Flanged Bushing (Bushing Inner Diameter: 3 to 60 mm)

Designation of Part Number

Please specify by part number.

Ī

	Recommended Dime	nsion Mating Part	Bushing [Dimensions																	(0.1	nit: mm)
Bushing I.D.	Houshing	Shaft	Flange	Flange	0.5	Wall					Part N	umber &	Bushin	g Lengt	h Tolera	nce _{- 0.3}						Bushing I.D.
1.0.	I.D.	Dia.	O.D.	Thickness	O.D.	Thickness	3	4	5	6	7	8	10	12	15	20	25	30	40	50	60	1.0.
3	Φ4.6H7 +0.012	φ3 ^{-0.025} -0.035	Φ7 0 -0.8	0.8 0	Φ4.6 ^{+0.047} _{+0.017}	0.8 0	0303-7		0305-7													3
4	Φ5.6H7 +0.012	$\phi4 {}^{-0.025}_{-0.037}$	$\phi 9 {0 \atop -0.8}$	0.8 0	Φ5.6 ^{+0.047} _{+0.017}	0.8 0		0404-9		0406-9												4
5	Φ7H7 ^{+0.015}	$\phi_5^{-0.025}_{-0.037}$	ϕ 10 $^{0}_{-0.8}$	1.0 0	ϕ 7 $^{+0.053}_{+0.023}$	$1.0_{-0.025}^{0}$		0504-10	0505-10	0506-10												5
6	Φ8H7 +0.015		ϕ 12 $^{0}_{-0.8}$	1.0 0 -0.15	φ8 ^{+0.053} _{+0.023}	$1.0_{-0.025}^{0}$			0605-12	0606-12	0607-1	2 0608-12	0610-12									6
7	Φ9H7 ^{+0.015}	$\phi 7 {}^{-0.025}_{-0.040}$	ϕ 13 $^{0}_{-0.8}$	1.0 0 -0.15	φ9 ^{+0.053} _{+0.023}	$1.0_{-0.025}^{0}$			0705-13		0707-1	3	0710-13	0712-13								7
8	Φ10H7 +0.015	$\phi 8 {}^{-0.025}_{-0.040}$	ϕ 15 $^{0}_{-0.8}$	1.0 0	Φ10 ^{+0.055} _{+0.025}	$1.0_{-0.025}^{0}$				0806-15		0808-15	0810-15	0812-15								8
10	Φ12H7 +0.018	ϕ 10 $^{-0.025}_{-0.040}$	ϕ 18 $^{0}_{-0.8}$	1.0 0	Φ12 ^{+0.060} _{+0.030}	$1.0_{-0.025}^{0}$				1006-18	1007-1	8 1008-18	1010-18	1012-18	1015-18							10
12	Φ14H7 +0.018	ϕ 12 $^{-0.025}_{-0.043}$	ϕ 20 $^{0}_{-0.8}$	1.0 0	ϕ 14 $^{+0.060}_{+0.030}$	$1.0_{-0.025}^{0}$				1206-20	1207-2	0 1208-20	1210-20	1212-20	1215-20	1220-20						12
14	Φ16H7 +0.018	ϕ 14 $^{-0.025}_{-0.043}$	ϕ 22 $^{0}_{-0.8}$	1.0 0 -0.15	ϕ 16 $^{+0.063}_{+0.033}$	1.0 0 -0.025							1410-22	1412-22	1415-22	1420-22						14
15	Φ17H7 +0.018	ϕ 15 $^{-0.025}_{-0.043}$	ϕ 23 $^{0}_{-0.8}$	1.0 0	ϕ 17 $^{+0.073}_{+0.038}$	1.0 0 -0.025							1510-23	1512-23	1515-23	1520-23	1525-23					15
16	Φ18H7 +0.018	ϕ 16 $^{-0.025}_{-0.043}$	ϕ 24 $^{0}_{-0.8}$	1.0 0 -0.15	Φ18 ^{+0.073} _{+0.038}	1.0 0 -0.025							1610-24	1612-24	1615-24	1620-24	1625-24					16
18	Φ20H7 ^{+0.021}	ϕ 18 $^{-0.025}_{-0.043}$	ϕ 26 $^{0}_{-0.8}$	1.0 0	Φ20 ^{+0.081} _{+0.046}	1.0 0 -0.025							1810-26	1812-26	1815-26	1820-26	1825-26					18
20	Φ23H7 ^{+0.021}	$\phi_{20} {}^{-0.025}_{-0.046}$	ϕ 31 $^{0}_{-0.8}$	1.5 0	Φ23 ^{+0.081} _{+0.046}	1.5 _0_0.030							2010-31	2012-31	2015-31	2020-31	2025-31	2030-31				20
22	Φ25H7 ^{+0.021}	$\phi_{22} {}^{-0.025}_{-0.046}$	ϕ 33 $\begin{array}{c} 0 \\ -0.8 \end{array}$	1.5 0	Φ25 ^{+0.086} _{+0.051}	1.5 _0_0.030							2210-33	2212-33	2215-33	2220-33	2225-33					22
24	Φ27H7 ^{+0.021}	$\phi_{24}^{-0.025}_{-0.046}$	ϕ 35 $^{0}_{-0.8}$	1.5 0	Φ27 ^{+0.086} _{+0.051}	1.5 _0_0.030									2415-35	2420-35	2425-35	2430-35				24
25	Φ28H7 ^{+0.021}	$\phi_{25} \stackrel{-0.025}{_{-0.046}}$	ϕ 36 $\begin{array}{c} 0 \\ -0.8 \end{array}$		Φ28 ^{+0.093} _{+0.056}	$1.5_{-0.030}^{0}$							2510-36	2512-36		2520-36	2525-36	2530-36				25
26	Φ30H7 ^{+0.021}	ϕ 26 $^{-0.025}_{-0.046}$	ϕ 38 $\begin{array}{c} 0 \\ -0.8 \end{array}$	2.0 0 -0.15	Φ30 ^{+0.115} +0.075	2.0 _0_030									2615-38							26
28	Φ32H7 ^{+0.025}	ϕ 28 $^{-0.025}_{-0.046}$	ϕ 40 $^{0}_{-0.8}$		Φ32 ^{+0.115} +0.075	$2.0_{-0.030}^{0}$									2815-40			2830-40				28
30	Φ34H7 +0.025	Φ30 ^{-0.025} -0.046	ϕ 42 $\begin{array}{c} 0 \\ -0.8 \end{array}$	2.0 0 -0.15	Φ34 ^{+0.115} +0.075	2.0 _0_030								3012-42	3015-42			3030-42 30	40-42			30
31	Φ35H7 ^{+0.025}	ϕ 31 $^{-0.025}_{-0.050}$	$\phi 45 {0 \atop -0.8}$	2.0 0 -0.15	Φ35 ^{+0.115} +0.075	$2.0_{-0.030}^{0}$											3125-45					31
32	Φ36H7 ^{+0.025}	ϕ 32 $^{-0.025}_{-0.050}$	ϕ 46 $^{0}_{-0.8}$		Φ36 ^{+0.115} +0.075	2.0 _0_030										3220-46						32
35	Φ39H7 ^{+0.025}	ϕ 35 $^{-0.025}_{-0.050}$	$\phi 49 {0 \atop -0.8}$	2.0 0 -0.15	Φ39 ^{+0.115} +0.075	$2.0_{-0.030}^{0}$								3512-49			3525-49	3530-49 35		550-49		35
38	Φ42H7 +0.025	ϕ 38 $^{-0.025}_{-0.050}$	ϕ 52 $^{0}_{-0.8}$		Φ42 ^{+0.115} +0.075											3820-52		3830-52 38				38
40	Φ44H7 +0.025		0			$2.0_{-0.030}^{0}$								4012-54				4030-54 40				40
45	Φ50H7 ^{+0.025}	ϕ 45 $^{-0.025}_{-0.050}$	$\phi 60 {}^{0}_{-0.8}$		φ50 ^{+0.115} +0.075	$2.5_{-0.040}^{0}$											4525-60	4530-60 45				45
50	Φ55H7 ^{+0.030}	ϕ 50 $^{-0.025}_{-0.050}$	$\phi 65 {}^{0}_{-0.8}$		φ55 ^{+0.145} +0.095	$2.5 \begin{array}{c} 0 \\ -0.040 \end{array}$										5020-65		5030-65 50			5060-65	
55	Φ60H7 ^{+0.030}	ϕ 55 $^{-0.025}_{-0.050}$	$\phi 70 {0 \atop -0.8}$			$2.5_{-0.040}^{0}$												5530-70 55			5560-70	
60	Φ65H7 +0.030	ϕ 60 $^{-0.025}_{-0.050}$	$\phi 75 \begin{array}{c} 0 \\ -0.8 \end{array}$	2.5 0 -0.15	φ65 ^{+0.145} _{+0.095}	2.5 0 -0.040												6030-75 60	40-75	6	060-75	60

RoHS

(Unit: mm)

K5T 06

Please specify by part number.

Product Symbol

			_
			1

Nomin	Part Number	1.0	O.D.	Thickness	Knock F	Pin Hole	Housing
I.D.	Part Number	I.D.	О.Б.	THICKHESS	Dia.	Dia. P. C. D	
6	K5T06	8 +0.25	$16 \begin{array}{c} 0 \\ -0.25 \end{array}$		1 100 +0.20	12 ±0.12	
8	K5T08	10 +0.25	$18 \begin{array}{c} 0 \\ -0.25 \end{array}$		1.100 +0.20	14 ±0.12	
10	K5T10	12 ^{+0.25}	$24 \begin{array}{c} 0 \\ -0.25 \end{array}$		1.625 ^{+0.25}	18 ±0.12	
12	K5T12	14 +0.25	$26 {}^{0}_{-0.25}$			20 ±0.12	
14	K5T14	16 ^{+0.25}	30 0 -0.25		2.125 ^{+0.25}	23 ±0.12	
16	K5T16	18 ^{+0.25}	32 0			25 ±0.12	
18	K5T18	20 +0.25	36 -0.25	4 □ □ 0.03		28 ±0.12	1.0 ^{+0.20} -0.05
20	K5T20	22 +0.25	38 -0.25	1.5 ^{-0.03} -0.08	3.125 ^{+0.25}	30 ±0.12	1.0 -0.20
22	K5T22	24 +0.25	$42 {\begin{array}{c} 0 \\ -0.25 \end{array}}$		3.120 0	33 ±0.12	
24	K5T24	26 ^{+0.25}	$44 \begin{array}{c} 0 \\ -0.25 \end{array}$			35 ±0.12	
25	K5T25	28 +0.25	$48 {}^{0}_{-0.25}$			38 ±0.12	
30	K5T30	32 +0.25	54 ⁰ _{-0.25}			43 ±0.12	
35	K5T35	38 +0.25	62 0		4.125 ^{+0.25}	50 ±0.12	
40	K5T40	42 ^{+0.25}	66 -0.25		4.120 0	54 ±0.12	
45	K5T45	48 +0.25	74 $^{0}_{-0.25}$	2.0 -0.03 -0.08		61 ±0.12	1.5 +0.20
50	K5T50	52 ^{+0.25}	78 ⁰ _{-0.25}	$2.0 \begin{array}{c} -0.03 \\ -0.08 \end{array}$		65 ±0.12	1.5 +0.20

Designation of Part Number

K5P 100

Please specify by part number.

(Unit: mm)

Part Number	Thickness	Width	Length
K5P100	1.0 +0.03 -0.13	80 +2.0	
K5P150	1.5 +0.03 -0.13	90 +2.0	
K5P200	2.0 +0.03 -0.13	100 +2.0	500 ^{+10.0}
K5P250	$2.5 \begin{array}{c} -0.05 \\ -0.15 \end{array}$	100 +2.0	
K5P300	$3.0 {}^{0}_{-0.1}$	100 +2.0	

DAIDYNE DDK35

This is a completely maintenance-free composite bearing made of polytetrafluoroethylene (PTFE) resin mixed with a special filler for low friction characteristics as well as optimal strength and dimensional stability of the metal. The phosphor bronze used for the backing provides excellent water resistance. This bearing is identical in construction to the DAIDYNE DDK05 with the lone exception that phosphor bronze is used instead of steel for the backing.

Features

- 1. The basic features and characteristics of this bearing are identical to those of the DDK05. Refer to pages 54-57 for more information.
- 2. Provides superior water resistance compared with
- 3. Constructed of non-magnetic materials.

Suitable applications for DDK35

When using DDK35 for heavy-duty operations, the appearance of the bearing will change during breaking-in. Once broken in, the bearing surface will change to the greenish-grey color like a semi-metallic mat. The areas that bear the brunt of a heavy load will have a dull bronze color. In some cases, the bearing surface could exhibit feathers. These are all typical of a DDK35 that is well broken in and operating normally. Therefore, even though its appearance changes, there is no deterioration of the bearing's performance and it remains suitable for use in extremely long-term operations

Prior to breaking in the bearing

Photographic cross-section of a DDK35 after breaking in and operating for a certain period of time.

Designing DDK35

Identical to the DDK05. Refer to "Designing DDK05" on pages 55-57.

DDK35 dimensions and specifications

Bushing inner diameter from 3 to 160 mm

K5B 0303(B)

K5F 0504-10(B

K5T 06(B)

Designation of Part Number

K5B 0303(B)

Please specify by Part No. This product is produced on order only.

Dimensions are identical to the DDK05 flanged bushing. Refer to pages 62-63 for more information.

Flanged bushing inner diameter from 5 to 60 mm

Designation of Part Number

K5F 0504-10(B)

Please specify by Part No. This product is produced on order only.

Refer to pages 62-63 for more information.

Thrust washe

Designation of Part Number

K5T 06(B)

Please specify by Part No. This product is produced on order only.

Dimensions are identical to the DDK05 thrust washer. Refer to page 64 for more information.

Slide plate

Designation of Part Number

Please specify by Part No.

Dimensions are identical to the DDK05 slide plate. This product is produced on order only. Refer to page 65 for more information.

DAIDYNE DDK02

This product is an environmentally friendly "lead-free bearing." The material structure of DAIDYNE DDK02 consists of multiple layers of PTFE resin + porous intermediate layer + steel lining (similar to that of DDK05) and due to the improvement of the sliding layer and porous layer, boundary surface performance and fluid lubrication have also improved.

- 1. Offers excellent wear-resistance along boundary surfaces and under fluid lubrication.
 - Provides three to five times the wear resistance of DDK05.
- 2. Offers low friction characteristics along boundary surfaces and under fluid lubrication.
 - Even less friction than DDK05.
- 3. Excellent corrosion resistance Suitable for a wide range of applications.

Performance Comparison between DDK05 and DDK02

The following results show the comparison of the amount of wear and the friction coefficient under the conditions of lubrication using shock absorber oil.

	Wear amount (µm)		Friction Coefficient		
	10	20	30	0.01	0.02
	'	'	'		,
DDK05					
DDIVOO					
DDK02					

Test Conditions		
1. Bushing Size (mm)	φ20×φ23×20L	
2. Speed (m/min)	3	
3.Specific Load (MPa)	19.6	
4.Clearance (Diameter)(mm)	0.08	
5.Lubrication	SAE#10,0.15 mm ³ /min	
6.Temperature	Room Temperature	
7.Shaft Material Roughness (µm Rmax) Hardness (Hv)	S55C 1.0 700	
8.Test Time (H)	100	

Standard Dimensions of the DDK02 Bushing

Thickness Dimensions of the DDK02 Bushing (Unit:mm)

		,	
Bushing nominal inner diameter		Thickness (T)	
min	max	THICKHESS (T)	
-	φ 19	1.0 0	
φ 19	Φ25	1.5 0	
Φ25	Φ40	2.0 0	
Φ40	Φ60	2.5 0 -0.040	
φ60	φ160	2.47 0 -0.050	

Identical to DDK05 bushings except for wall thickness Please see pages 58 to 61 for DDK05 bushing dimensions.

Polymer bearing materials DAIDYNE DDK06

The material structure of DDK06 consists of multiple layers of PTFE resin + porous intermediate layer + steel lining (similar to that of DDK05) and due to the improvement of the sliding layer and porous layer, boundary surface performance and fluid lubrication have also improved.

Features

- •Excellent cavitation resistance Approximately ten times better than DDK05
- -Low friction characteristics of the boundary surface and fluid lubrication - Lower friction characteristics than DDK05

Performance Comparison between DDK05 and DDK06

The following results show the comparison of the amount of wear and the friction coefficient under the conditions of lubrication using shock absorber oil.

	Wear amount (µm) 10 20 30	Friction Coefficient 0.01 0.02	
DDK05			
DDK06			

Test Conditions			
1. Bushing Size (mm)	φ20×φ23×20L		
2. Speed (m/min)	3		
3.Specific Load (MPa)	19.6		
4.Clearance (Diameter)(mm)	0.08		
5.Lubrication	SAE#10,0.15 mm³/min		
6.Temperature	Room Temperature		
7.Shaft Material Roughness (µm Rmax) Hardness (Hv)	\$55C 1.0 700		
8.Test Time (H)	100		

- •Excellent wear resistance of the boundary surface and fluid lubrication (at low or intermediate load) - Three to five times better wear resistance than DDK05
- Excellent corrosion resistance Wide range of applications

Results of Cavitation Testing

Test conditions	Dimensions	Unit
1. Test sample dimensions	40×40	mm
2. Alloy thickness	0.3	mm
3. Surface layer thickness	0.01 - 0.03	mm
4. Frequency	19	kHz
5. Output	600	W
6. Lubricant	Water	_
7. Lubricant temperature	10 - 20	°C
8. Clearance	1.0	mm
9. Honed diameter	35	mm
10. Test time	3	min

Standard Dimensions of the DDK06 Bushing

Thickness Dimensions of the DDK06 Bushing (Unit: mm)

		<u> </u>	
Bushing nominal inner diameter		Thickness (T)	
min	max	Thickness (T)	
-	φ19	1.0 0	
φ19	φ25	1.5 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
φ25	φ40	2.0 0 -0.025	
φ40	φ60	2.5 0	
φ60	φ160	2.47 0 -0.050	

Identical to DDK05 bushings except for wall thickness Please see pages 58 to 61 for DDK05 bushing dimensions.

DAIBEST DBB01

5

Pb

These are oil-impregnated bearings of our own proprietary lubrication characteristics, in which lipophilic fibers and special filler material are uniformly dispersed within polyacetal plastic resin, a plastic bearing material offering excellent bearing characteristics.

Bimetal type with back metal – DBB01

Features

- 1.Can be used without an oil supply
- 2.Can be used at high-load and at high speed
- 3. Dimensions and shape are stabilized. Thin wall permits compact equipment design.
- 4.Exhibits superior wear resistant properties where oil film formation is difficult such as reciprocating motion, oscillating motion or frequent start/stop
- 5. Abundant standard parts such as wrapped bushes and thrust washers are available.
- 6. There is interchangeability with DDK05 and DBX01 bearing.

Material Characteristics DAIBEST(Typical Values)

Property of DAIBEST Bearing Resin Layer

Gravity	Coefficient of Linear Thermal Expansion(×10 ⁻⁵ /°C)	Heat Transfer Coefficient (Cal/sec • °C/cm)	Tensile Strength (MPa)	Elongation (%)	Oil Content (%)
1.4	8.4	5.5×10 ⁻⁴	Above 42	Above 10	Above 4

Bearing Characteristics and Test Data

DBB01

Lubrication	No Oil supply	
Allowable Max. Load MPa	68.6	
Allowable Max. Speed m/min	150	
Allowable Max. PV value MPa-m/min	157	
Limit Service Temperature °C	-40 – +120	

When the bearing is used under lubrication the bearing properties will increase depending on the condition.

DBB DBB01 Bushing (Bushing Inner Diameter: 5 to 100 mm)

Designation of Part Number

DBB OO OO

Bushing Length Bushing Nominal I.D.

Product Symbol

DBB 0504

	─ Please	specify by	part numb	er.									7			(Uı	nit: mm)
	Recommended Di	mension Mating Part	Bushing D	imensions													
Bushing I.D.	Houshing	Chaft Dia	0.0	Wall						Part Num	ber & Bush	ing Length	Tolerance	0 - 0.3			Bushing I.D.
	I.D.	Shaft Dia.	O.D.	Thickness	4	5	6	7	8	10	12	15	20	25	30	40	
5	φ7H7 ^{+0.015}	φ5h7 ⁰ _{-0.012}	φ7 ^{+0.053} _{+0.023}	1.0 -0.020	0504	0505	0506		0508								5
6	Φ8H7 ^{+0.015}	φ6h7 _{-0.012}	φ8 ^{+0.053} _{+0.023}	1.0 -0.020		0605	0606	0607	0608	0610							6
7	Φ9H7 ^{+0.015}	φ7h7 ⁰ _{-0.015}	φ9 ^{+0.053} _{+0.023}	1.0 -0.020		0705		0707		0710	0712						7
8	φ10H7 ^{+0.015}	ϕ 8h7 $^{0}_{-0.015}$	φ10 ^{+0.055} _{+0.025}	1.0 -0.020			0806		0808	0810	0812						8
10	φ12H7 ^{+0.018}	ϕ 10h7 $^{0}_{-0.015}$	ϕ 12 $^{+0.053}_{+0.023}$	1.0 ^{-0.020} -0.060			1006	1007	1008	1010	1012	1015	1020				10
12	φ14H7 ^{+0.018} ₀	φ12h7 ⁰ _{-0.018}	φ14 ^{+0.060} _{+0.030}	1.0 -0.020			1206		1208	1210	1212	1215	1220				12
14	φ16H7 ^{+0.018}	φ14h7 _{-0.018}		1.0 -0.020						1410	1412	1415	1420				14
15	φ17H7 ^{+0.018} ₀	φ15h7 ⁰ _{-0.018}	φ17 ^{+0.073} _{+0.038}	1.0 -0.020						1510	1512	1515	1520	1525			15
16	φ18H7 ^{+0.018} ₀	φ16h7 _{-0.018}	φ18 ^{+0.073} _{+0.038}	1.0 -0.020						1610	1612	1615	1620	1625			16
18	φ20H7 ^{+0.021}	φ18h7 ⁰ _{-0.018}	φ20 ^{+0.081} _{+0.046}	1.0 -0.020						1810	1812	1815	1820	1825			18
20	Ф23H7 ^{+0.021}	φ20h7 _{-0.021}	φ23 ^{+0.081} _{+0.046}	1.5 ^{-0.025} _{-0.065}						2010	2012	2015	2020	2025	2030		20
22	φ25H7 ^{+0.021}	φ22h7 _{-0.021}	φ25 ^{+0.086} _{+0.051}	1.5 ^{-0.025} _{-0.065}						2210	2212	2215	2220	2225			22
24	φ27H7 ^{+0.021}	Φ24h7 _{-0.021}	φ27 ^{+0.086} _{+0.051}	1.5 ^{-0.025} _{-0.065}								2415	2420	2425	2430		24
25	φ28H7 ^{+0.021}	Φ25h7 _{-0.021}	φ28 ^{+0.093} _{+0.056}	1.5 -0.025						2510	2512	2515	2520	2525	2530		25
26	Ф30H7 ^{+0.021}	φ26h7 _{-0.021}	φ30 ^{+0.115} _{+0.075}	2.0 -0.030								2615	2620		2630		26
28	Ф32H7 ^{+0.025}	φ28h7 ⁰ _{-0.021}	φ32 ^{+0.115} _{+0.075}	2.0 -0.030							2812	2815	2820		2830		28
30	φ34H7 ^{+0.025}	φ30h7 ⁰ _{-0.021}	φ34 ^{+0.115} _{+0.075}	2.0 -0.030							3012	3015	3020	3025	3030	3040	30
32	Ф36H7 ^{+0.025}	φ32h7 _{-0.025}	φ36 ^{+0.115} _{+0.075}	2.0 -0.030									3220	3225	3230	3240	32
	10.005		10.115	0.000	12	15	20	25	30	40	50	60	70	80	90	95	
35	φ39H7 ^{+0.025}	Φ35h7 _{-0.025}	Φ39 ^{+0.115} +0.075	2.0 -0.030	3512		3520	3525	3530	3540	3550						35
38	φ42H7 ^{+0.025}	Φ38h7 _{-0.025}	Φ42 ^{+0.115} _{+0.075}	2.0 -0.030			3820			3840							38
40	φ44H7 ^{+0.025}	Φ40h7 -0.025	Φ44 ^{+0.115} +0.075	2.0 -0.030	4012		4020	4025	4030	4040	4050						40
45	φ50H7 ^{+0.025}	φ45h7 _{-0.025}	Φ50 ^{+0.115} +0.075	2.5 -0.040			4520	4525	4530	4540	4550						45
50	φ55H7 ^{+0.030}		φ55 ^{+0.145} +0.095				5020		5030	5040		5060					50
55	φ60H7 ^{+0.030}								5530	5540		5560					55
60	φ65H7 ^{+0.030}	φ60h7 _{-0.030}							6030	6040		6060					60
65	φ70H7 ^{+0.030}		φ70 ^{+0.145} _{+0.095}						6530	6540		6560					65
70	φ75H7 ^{+0.030}		Φ75 ^{+0.145} _{+0.095}							7040		7060		7080			70
75	Φ80H7 ^{+0.030}								7530	7540		7560		7580			75
80	Φ85H7 ^{+0.035}		Φ85 ^{+0.165} +0.100	2.5 -0.040						8040		8060		8080			80
85	φ90H7 ^{+0.035}			2.5 -0.040						8540		8560		8580			85
90	Φ95H7 ^{+0.035}			2.5 -0.040						9040		9060			9090		90
100	φ105H7 ^{+0.035}	φ100h7 _{-0.035}	ϕ 105 $^{+0.180}_{+0.115}$	2.5 -0.040							10050		10070			10095	100

Some size requires special coating to avoid lube evaporate. Material thickness in the list does

not include special coating thickness.

DBB DBB01 Thrust Washer

Designation of Part Number

DBB 10W

							(Unit: mm)
Nominal	Dort Number	10	0.0	Thickness	Knock I	Pin Hole	Recess
I.D.	Part Number	I.D.	O.D. Thickness		Dia.	P. C. D	Depth
10	DBB10W	12 + 0.25	24 0-0.25		1.6 +0.45 +0.20	18 ±0.12	
12	DBB12W	14 + 0.25	26 -0.25			20 ±0.12	
14	DBB14W	16 ^{+ 0.25}	30 -0.25		2.0 +0.45 +0.20	23 ±0.12	
16	DBB16W	18 ^{+0.25}	32 0			25 ±0.12	
18	DBB18W	20 + 0.25	36 -0.25			28 ±0.12	
20	DBB20W	23 + 0.25	38 -0.25	0.05	+0.45	31 ±0.12	0
22	DBB22W	25 ^{+ 0.25}	42 -0.25	1.5 -0.20	3.0 +0.20	34 ±0.12	1.1 -0.25
24	DBB24W	27 + 0.25	44 -0.25			36 ±0.12	
25	DBB25W	28 + 0.25	48 -0.25			38 ±0.12	
30	DBB30W	34 + 0.25	54 -0.25			44 ±0.12	
35	DBB35W	39 + 0.25	62 -0.25		+0.45	51 ±0.12	
40	DBB40W	44 + 0.25	66 -0.25		4.0 +0.45 +0.20	55 ±0.12	
45	DBB45W	50 ^{+ 0.25}	74 0	O.F0.05		62 ±0.12	100
50	DBB50W	55 ^{+0.25}	78 ⁰ _{-0.25}	2.5 -0.20		67 ±0.12	1.6 -0.25

DBB DBB01 Slide Plate

Designation of Part Number

Please specify by part number.

			(Orne: IIIII
Part Number	Thickness	Width	Length
SS150DBB	1.5 -0.05 -0.20	80 +2.0	
SS200DBB	2.0 -0.05	100 +2.0	500 ^{+10.0}
SS250DBB	2.5 -0.05	100 +2.0	

These are oil-impregnated bearings of our own proprietary lubrication characteristics, in which lipophilic fibers and special filler material are uniformly dispersed within polyacetal plastic resin, a plastic bearing material offering excellent bearing characteristics. Solid type – DBS02

Features

- 1.Can be used without oil supply
- 2. Superior load carrying characteristics and wear resistant properties
- 3.Low friction coefficient (μ =0.01 to 0.15) and excellent speed properties
- 4. Minimizes operating noise and free from stick slip phenomenon
- 5. Will not damage the surface of engaging component
- 6.Shaft misalignment tolerance is excellent.

Material: DBS02

POM + special filler material + lipophilic fibers + oil (oil-impregnation rate of 4% or higher)

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (HRM)	Linear-expansion coefficient
1.47	60.8	60	80	9 – 13

Sliding Characteristics (typical vzalues)

Material	Friction coefficient(µ)	Rated maximum load (MPa)	Rated maximum speed (m/min)	Service temperature range(°C)
DBS02	0.01 – 0.15	9.6	60	-40 – 80

Bearing Characteristics and Test Data

• DBS02

Lubrication	No Oil supply
Allowable Max. Load MPa	9.6
Allowable Max. Speed m/min	60
Allowable Max. PV value MPa-m/min	30
Limit Service Temperature °C	-40 – +80

When the bearing is used under lubrication the bearing properties will improve depending on the condition.

DBS DBS02 Bushing (Bushing Inner Diameter: 3 to 30 mm)

Designation of Part Number

DBS 0303

Please specify by part number.

	·	(Ur

	Recommended Dime	ension Mating Part	Bushing	Dimensions	3													
Bushing I.D.	Houshing	Shaft	0.0	Wall							Part Number & Bus	shing Len	gth Tolera	nce _{-0.3}				Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	3	4	5	6	8	10		12	15	20	25	30	40	
3	φ5H7 ^{+0.012}	Φ3h7 _{-0.010}	ϕ 5 $^{+0.210}_{+0.072}$	1.0 ^{-0.015} -0.046	0303		0305											3
4	Φ6H7 ^{+0.012}	Φ4h7 _{-0.012}	ϕ 6 $^{+0.210}_{+0.072}$	1.0 -0.023 -0.078		0404		0406										4
5	Φ7H7 ^{+0.015}	Φ5h7 _{-0.012}	ϕ 7 $^{+0.270}_{+0.095}$	1.0 -0.025 -0.085			0505		0508	0510								5
6	Φ8H7 ^{+0.015}	Φ6h7 _{-0.012}	Φ8 ^{+0.270} _{+0.095}	1.0 -0.025 -0.085			0605	0606	0608	0610								6
8	Φ10H7 ^{+0.015}	0.010	ϕ 10 $^{+0.270}_{+0.095}$	1.0 -0.025 -0.085				0806	8080	0810		0812	0815					8
10	Φ12H7 ^{+0.018}	Φ10h7 _{-0.015}	ϕ 12 $^{+0.340}_{+0.108}$	1.0 -0.025 -0.085					1008	1010		1012	1015					10
12	Φ14H7 ^{+0.018}		ϕ 14 $^{+0.340}_{+0.108}$	1.0 -0.025 -0.085						1210		1212	1215	1220				12
14	Φ16H7 ^{+0.018}		ϕ 16 $^{+0.340}_{+0.108}$	1.0 -0.025 -0.085						1410			1415	1420				14
15	Φ17H7 ^{+0.018}	Φ15h7 _{-0.018}	ϕ 17 $^{+0.340}_{+0.108}$	1.0 -0.025 -0.085						1510			1515	1520				0.1 15
16	Φ18H7 ^{+0.018}	Φ16h7 _{-0.018}	ϕ 18 $^{+0.340}_{+0.108}$	1.0 -0.025 -0.085									1615	1620	1625			16
18	Φ20H7 ^{+0.021}	Φ18h7 _{-0.018}	ϕ 20 $^{+0.450}_{+0.121}$	1.0 -0.025 -0.085									1815	1820	1825			18
20	Φ23H7 ^{+0.021}	Φ20h7 _{-0.021}	ϕ 23 $^{+0.450}_{+0.121}$	1.5 -0.027 -0.087						2010			2015	2020	2025	2030		20
22	Φ25H7 ^{+0.021}	Φ22h7 _{-0.021}	ϕ 25 $^{+0.450}_{+0.121}$	1.5 -0.027 -0.087										2220		2230		22
25	Φ28H7 ^{+0.021}	Φ25h7 _{-0.021}	ϕ 28 $^{+0.450}_{+0.121}$	1.5 -0.027 -0.087										2520	2525	2530		25
28	Φ32H7 ^{+0.025}	Φ28h7 _{-0.021}	ϕ 32 $^{+0.550}_{+0.131}$	2.0 -0.030										2820	2825	2830		28
30	Φ34H7 ^{+0.025}	Φ30h7 _{-0.021}	Φ34 ^{+0.550} _{+0.131}	2.0 -0.030										3020		3030	3040	30

Note: Dimensions are subject to change without prior notice.

DBS DBS02 Flanged Bushing (Bushing Inner Diameter:)

Designation of Part Number

DBS 0303-8F

Please specify by part number.

																				(Unit: mm)
	Recommended Dime	ension Mating Part	Bushing	Dimensions	3															
Bushing I.D.	Houshing	Shaft	Flange	Flange	0.0	Wall					P	art Num	ber & Bu	shing Len	gth Tole	rance -0.3				Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	O.D.	Thickness	3	4	5	6		7	8	10	12	15	20	25	30 40	
3	φ5H7 ^{+0.012}	Φ3h7 _{-0.010}	φ8 ±0.25	1.0 -0.1	φ5 ^{+0.210} _{+0.072}	1.0 ^{-0.015} -0.070	0303-8F													3
4	Φ6H7 ^{+0.012}	Φ4h7 -0.012	φ9 ±0.25	1.0 -0.1	φ6 ^{+0.210} _{+0.072}	1.0 ^{-0.023} _{-0.078}		0404-9F		0406-9F										4
5	Φ7H7 ^{+0.015}	Φ5h7 _{-0.012}	φ10 ±0.25	1.0 -0.1	φ7 ^{+0.270} _{+0.095}	1.0 ^{-0.025} -0.085		0504-10F	0505-10F		O)507-10F								5
6	Φ8H7 ^{+0.015}	Φ6h7 _{-0.012}	ϕ 12 ±0.25	1.0 -0.1	Φ8 ^{+0.270} _{+0.095}	1.0 ^{-0.025} -0.085			0605-12F	0606-12F			0608-12F							6
7	Φ9H7 ^{+0.015}	Φ7h7 _{-0.015}	φ13 ±0.25	1.0 -0.1	φ9 ^{+0.270} _{+0.095}	1.0 ^{-0.025} -0.085			0705-13F		C	707-13F								7
8	Φ10H7 ^{+0.015}	Φ8h7 _{-0.015}	Φ15 ±0.25	1.0 -0.1	Φ10 ^{+0.270} _{+0.095}	1.0 ^{-0.025} -0.085	0803-15F			0806-15F			0808-15F	0810-15F						8
10	Φ12H7 ^{+0.018}	Φ10h7 -0.015	φ18 ±0.25	1.0 - 0.1	Φ12 ^{+0.340} _{+0.108}	1.0 ^{-0.025} -0.085				1006-18F			1008-18F	1010-18F	1012-18F	1015-18F				10
12	Φ14H7 ^{+0.018}	Φ12h7 -0.018	Φ20 ±0.25	1.0 -0.1	Φ14 ^{+0.340} _{+0.108}	1.0 ^{-0.025} -0.085				1206-20F			1208-20F	1210-20F	212-20F	1215-20F				12
14	Φ16H7 ^{+0.018}	Φ14h7 _{-0.018}	Φ22 ±0.25	1.0 -0.1	Φ16 ^{+0.340} _{+0.108}	1.0 ^{-0.025} -0.085								1410-22F	412-22F	1415-22F	1420-22F			14
15	Φ17H7 ^{+0.018}	Φ15h7 _{-0.018}	Φ23 ±0.25	1.0 -0.1	Φ17 ^{+0.340} _{+0.108}	1.0 -0.025								1510-23F	512-23F	1515-23F	1520-23F			15
16	Φ18H7 ^{+0.018}	Φ16h7 _{-0.018}	Φ24 ±0.25	1.0 -0.1	Φ18 ^{+0.340} _{+0.108}	1.0 ^{-0.025} -0.085								1610-24F		1615-24F	1620-24F			16
18	Φ20H7 ^{+0.021}	Φ18h7 _{-0.018}	φ26 ±0.25	1.0 -0.1	Φ20 ^{+0.450} _{+0.121}	1.0 -0.025								1810-26F	812-26F	1815-26F	1820-26F			18
20	Φ23H7 ^{+0.021}	Φ20h7 _{-0.021}	Φ31 ±0.25	1.5 - 0.15	Φ23 ^{+0.450} _{+0.121}	1.5 ^{-0.027} _{-0.087}								2010-31F		2015-31F	2020-31F 20	25-31F		20
22	Φ25H7 ^{+0.021}	Φ22h7 _{-0.021}	Φ33 ±0.25	1.5 - 0.15	Φ25 ^{+0.450} _{+0.121}	1.5 ^{-0.027} _{-0.087}								2210-33F		2215-33F	2220-33F 22	25-33F		22
25	Φ28H7 ^{+0.021}		Φ36 ±0.25	1.5 - 0.15	Φ28 ^{+0.450} _{+0.121}	1.5 -0.027								2510-36F		2515-36F	2520-36F 25	25-36F	2530-36F	25
30	Φ34H7 ^{+0.025}	Φ30h7 _{-0.021}	Φ42 ±0.25	2.0 -0.15	Φ34 ^{+0.550} _{+0.131}	2.0 -0.030 -0.090											3020-42F		3030-42F 3040-4	2F 30
35	Φ39H7 ^{+0.025} ₀	Φ35h7 _{-0.025}	Φ49 ±0.25	2.0 -0.15	Φ39 ^{+0.550} _{+0.131}	2.0 -0.030 -0.090											3520-49F		3530-49F 3540-4	9F 35

Note: Dimensions are subject to change without prior notice.

Polymer bearing materials DABEST DBX01

As this is a pre-lubricating bearing ensure it is filled with lubricant before installation. Then the material will supply a small amount of lubricant at predetermined intervals to allow the bearing to withstand long term operation. The bearing has a structure where bronze in a spherical powdered form is sintered on to the steel backing. Polyacetal resin is then impregnated into the surface.

- 1. Operation is quiet, free from squeaking or knocking.
- 2.Low friction characteristic prevents damage to the shaft (mating surface).
- 3. The bearing surface remains virtually wear-free with minimum amount of lubricant (grease or oil).
- 4.Low starting friction permits very smooth rotation at start up and at low speed under high load conditions. Sliding surfaces are also seizure free.
- 5. Shaft misalignment tolerance is excellent.
- 6. The bearing can withstand impact loads.
- 7. Excellent load-carrying performance is maintained even under oscillating and fretting conditions.

Characteristics

1.Load Carrying Capability

The capability varies depending on the load properties and lubrication conditions. The maximum load that DBX01 can carry is shown in Table 1.

Table 1: Allowable Load(U)

Load	Motion Condition	Lubrication	U MPa
1.Static Load	Slight or very slow movement	Grease or Oil	137.0
2.Static Load	Continuous Rotation	Grease or Oil (Boundary lubrication)	68.6
3.Static Load or Dynamic Load	Continuous Rotation	Oil (Fluid Lubrication)	44.1
4.Static Load	Oscillating Rotation	Grease or Oil	*
5.Dynamic Load	Continuous Rotation	Grease or Oil (Boundary lubrication)	*
	ccording to the frequency of the cycle. values are shown on the right.	10 ⁵ cycles or less 10 ⁷ cycles 10 ⁸ cycles or more	137.0 19.6 4.9

2.Relation betweenWear and the interval of lubrication

Oil is supplied to DBX01 bearings at assembly. The amount of wear after running in is very small . Furthermore, wear is kept to a minimum until the lubricant is exhausted (Figure 1).

Figure 1: Relationship between wear and the interval of lubrication

3.PV Value and Bearing performance

The performance of bearing is influenced by the PV value and the operating conditions.

The PV value is the product of Specific Load (MPa) and sliding speed (m/min). The solid line "A" in Figure 2 shows the bearing life when grease was supplied only at installation, and the dashed line "B" shows the recommended grease re-supply interval.

When the PV value exceeds 170 MPa-m/min, successive oil lubrication is desired.

Figure 2: Lubrication Diagram of DBX01 Bearing

4. Conditions of use

To calculate service life and lubrication interval accurately, it is necessary to take such factors as speed, type of load, and ambient temperature as well as the condition of the housing and roughness of the mating surfaces into consideration, which requires that figures obtained from Fig. 2 must be multiplied by coefficients of usage q, t, and s, found in Tables 2, 3, and 4, respectively.

Table 2: Coefficient of usage q for grease lubrication per speed and bearing performance at an ambient temperature of 25°C

Speed in m/min	24 or less	24 – 45	45 – 90	90 or more
Maximum allowable PV value MPa·m/min	170.0	170.0	170.0	62.0
DBX01 Bushing Static loading, vertical (Lubricant flows into the loaded region.)	2.0	2.0	1.5	0.8
DBX01 Bushing Static loading, other than vertical (Lubricant flows out of the loaded region.)	1.0	1.0	0.8	0.4
DBX01 Bushing rotational loading	3.0	3.0	2.0	1.2
DBX01 Thrust washer	1.0	0.5	0.1	_

Table 3: Coefficient of usage t for the effect of temperature per operating temperature range

Condition of the housing	Type of	Ambier	nt tempera	ture of axl	e in °C	
Condition of the housing	grease	20 – 40	50	75	100	
Ordinary heat dissipation	Silicone-based	1.0	0.7	0.4	0.2	
properties	Lithium-based	1.0	0.6	0.3	0.1	
Light-weight stamped-metal housing with poor heat	Silicone-based	0.5	0.35	0.2	0.1	
dissipation properties or segmented housing	Lithium-based	0.4	0.25	0.1		
Non-metal housing with poor heat dissipation	Silicone-based	0.3	0.2	Not recor	nmended	
properties	Lithium-based	0.2	0.1	Not recommended		

Table 4: Coefficient of usage s for the effect of mating surface roughness.

Mating surface roughness	Coefficient of usage s
0 – 2.5µm Rmx	1.00
2.5 – 3.9µm Rmx	0.25
3.9 – 5.5µm Rmx	0.10
5.5 – 7.8µm Rmx	0.05

DXB DBX01 Bushing (Bushing Inner Diameter: 10 to 100 mm)

Designation of Part Number

DXB 1010

Please specify by part number.

(U	r	וו	Ιτ	:	r	۲	11	Υ	
'										

	Recommended Dime	ension Mating Part	Bushing	Dimension	s												
Bushing I.D.	Houshing	Shaft	O.D.	Wall	Oil Hole						Part Num	oer & Bush	ning Lengt	h Tolerand	e - ⁰		Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	Dia.	10	15	20	25	30	40	50	60	80	90	95	
10	φ13H7 ^{+0.018} ₀	ϕ 10h7 $_{-0.015}^{0}$	ϕ 13 $^{+0.060}_{+0.030}$	1.5(-0.026	Φ4	1010	1015	1020									10
12	Φ15H7 ^{+0.018}	Φ12h7 _{-0.018}	ϕ 15 $^{+0.063}_{+0.033}$	1.5(-0.026	Φ4		1215	1220									12
14	Φ17H7 ^{+0.018}	Φ14h7 ⁰ _{-0.018}	ϕ 17 $^{+0.073}_{+0.038}$	1.5(-0.026	Φ4		1415	1420									14
15	Φ18H7 ^{+0.018}	ϕ 15h7 $_{-0.018}^{0}$	ϕ 18 $^{+0.073}_{+0.038}$	1.5(-0.026	Φ4		1515		1525								15
16	Φ19H7 ^{+0.021}	ϕ 16h7 $_{-0.018}^{0}$	ϕ 19 $^{+0.081}_{+0.046}$	1.5(-0.026)	Φ4		1615	1620	1625								16
18	Φ21H7 ^{+0.021}	ϕ 18h7 $_{-0.018}^{0}$	ϕ 21 $^{+0.081}_{+0.046}$	1.5(-0.026)	Φ4		1815	1820	1825								18
20	Φ23H7 ^{+0.021}	ϕ 20h7 $_{-0.021}^{0}$	ϕ 23 $^{+0.081}_{+0.046}$	1.5(-0.026)	Φ4		2015		2025	2030							20
22	Φ25H7 ^{+0.021}	Φ22h7 _{-0.021}	ϕ 25 $^{+0.086}_{+0.051}$	1.5(-0.026)	Φ6		2215	2220	2225								22
24	Φ27H7 ^{+0.021}	Φ24h7 _{-0.021}	ϕ 27 $^{+0.086}_{+0.051}$	1.5(-0.026)	Φ6		2415	2420	2425	2430							24
25	Φ28H7 ^{+0.021}	Φ25h7 _{-0.021}	Φ28 ^{+0.093} _{+0.056}	1.5(-0.026)	Φ6		2515		2525	2530							25
30	Φ34H7 ^{+0.025}	Φ30h7 _{-0.021}	Φ34 ^{+0.115} _{+0.075}	2.0(-0.032	Φ6			3020		3030	3040						30
35	Φ39H7 ^{+0.025}	Φ35h7 _{-0.025}	Φ39 ^{+0.115} +0.075	2.0(-0.032)	Φ6			3520		3530		3550					35
40	Φ44H7 ^{+0.025}	Φ40h7 _{-0.025}	Φ44 ^{+0.115} +0.075	2.0(-0.032)	Φ8			4020		4030		4050					40
45	Φ50H7 ^{+0.025}	Φ45h7 _{-0.025}	φ50 ^{+0.115} +0.075	2.5(-0.040)	Φ8					4530		4550					45
50	Φ55H7 ^{+0.030}	ϕ 50h7 $_{-0.025}^{0}$	ϕ 55 $^{+0.145}_{+0.095}$	2.5(-0.040)	Φ8						5040		5060				50
55	Φ60H7 ^{+0.030}	Φ55h7 _{-0.030}	φ60 ^{+0.145} _{+0.095}	2.5(-0.040)	Φ8						5540		5560				55
60	Φ65H7 ^{+0.030}	Φ60h7 _{-0.030}	Φ65 ^{+0.145} _{+0.095}	2.5(-0.040	Φ8						6040		6060				60
65	φ70H7 ^{+0.030}	Φ65h7 _{-0.030}	Φ70 ^{+0.145} _{+0.095}	2.5(-0.050	Φ8						6540		6560				65
70	φ75H7 ^{+0.030}	Φ70h7 _{-0.030}	Φ75 ^{+0.145} _{+0.095}	2.5(-0.050	Φ8						7040			7080			70
75	Φ80H7 ^{+0.030}	Φ75h7 _{-0.030}	Φ80 ^{+0.160} _{+0.095}		Φ9.5						7540			7580			75
80	Φ85H7 ^{+0.035}	Φ80h7 _{-0.030}	Φ85 ^{+0.165} _{+0.100}	2.5(-0.050	Φ9.5						8040			8080			80
85	Φ90H7 ^{+0.035}	Φ85h7 _{-0.035}	Φ90 ^{+0.165} +0.100	2.5(-0.050	Φ9.5						8540			8580			85
90	Φ95H7 ^{+0.035}	Φ90h7 _{-0.035}	Φ95 ^{+0.165} _{+0.100}		Φ9.5						9040				9090		90
100	Φ105H7 ^{+0.035}	Φ100h7 _{-0.035}	ϕ 105 $^{+0.180}_{+0.115}$	2.5(-0.050	Φ9.5											10095	100

DXT DBX01 Thrust Washer

Please specify by part number.

Designation of Part Number

DX T Nominal I.D.

Thrust Washer

Product Symbol

10

(Unit: mm)

							(Unit: mm)
Nominal	Part Number	I.D.	O.D.	Thickness	Knock F	Pin Hole	Houshing
I.D.	rait Number	I.D.	O.D.	THICKHESS	Dia.	P.C.D	Recess Depth
10	DXT10	12 +0.25	24 -0.25		1.625 +0.25		
12	DXT12	1 4 +0.25	26 -0.25			20 ±0.12	
14	DXT14	16 +0.25	30 -0.25		2.125 +0.25	23 ±0.12	
16	DXT16	18 +0.25	32 -0.25		3.125 +0.25	25 ±0.12	
18	DXT18	20 +0.25	36 -0.25			28 ±0.12	
20	DXT20	22 +0.25	38 -0.25	4 = -0.08		30 ±0.12	
22	DXT22	24 +0.25	42 -0.25	1.5 -0.08 -0.15		33 ±0.12	1.1 -0.25
24	DXT24	26 +0.25	44 -0.25			35 ±0.12	
25	DXT25	28 +0.25	48 -0.25			38 ±0.12	
30	DXT30	32 +0.25	54 -0.25			43 ±0.12	
35	DXT35	38 +0.25	62 -0.25	50 ±		50 ±0.12	
40	DXT40	42 +0.25	66 -0.25		4.125 +0.25	54 ±0.12	
45	DXT45	48 +0.25	74 -0.25	0 = -0.07		61 ±0.12	4.0 0
50	DXT50	52 ^{+0.25}	78 -0.25	2.5 -0.15		65 ±0.12	1.6 -0.25

DXP DBX01 Slide Plate

Designation of Part Number

DXP 150

Please specify by Part number.
 This product is produced on order only.

Part Number	Thickness	Width	Length	(Un
DXP150	1.5 -0.05	90 +0.2		
DXP200	2.0 -0.05	100 +0.2	500 +10.0	
DXP250	2.5 -0.05	100 +0.2		

Polymer bearing materials DAINESH DIMMO1

The new generation of sliding material, "DAIMESH DMM01" has excellent performance and high applicability due to the compound of bronze mesh and resin it contains.

Features

- 1. The wide range of adjustment from micro clearance to negative clearance eliminates noise inside the assembly.
- 2. A resin layer consisting mostly of PTFE provides smooth operation with stable friction.
- 3. Compound material of metal mesh and resin offers excellent load, wear and corrosion resistance.
- 4. This material is applicable to a wide range of service temperatures (-200 - +280°C).
- 5. Due to thin and flexible wall the material is space saving and enables easy installation.
- 6. Installation by adhesion is possible.

Installation procedure

The dimensions of DAIMESH DMM01 can be set as either clearance or negative clearance. Select one of these two installation methods by taking into consideration the balance of rattling and service torque.

- 1.Clearance method Install the bearing and then assemble the shaft. The torque changes corresponding to surface load and surface speed.
- 2. Negative clearance method This method should be selected to eliminate noise. Bearing and shaft can be installed together in the housing. Torque is related to the negative clearance condition.
- 3. Calculation of shaft dimensions (ensure to take max and min values of each dimension into consideration)
- (1) Clearance method Shaft diameter = Inner diameter of housing - (2 x thickness of bushing) - clearance
- (2) Clamping allowance method Shaft diameter = Inner diameter of housing - (2 x thickness of bushing) + negative clearance

Shaft

1. Process the bottom end of the shaft as shown in the diagram below to avoid damage at the time of installation.

(Note)Make the part marked with a circle (O) smooth.

2. Ensure the shaft roughness is set at 3.2s. For more stable operational use ensure that shaft roughness is set to 1.6s.

Adhesion

DAIMESH DMM01 can be installed by adhesion. This method is effective especially for the installation of flat bar figure and hemispherical cup figure.

- 1.It is important to pre-clean both the DAIMESH DMM and the surface to which it will be adhered. Select an appropriate adhesive for accurate adhesion.
- 2.Please consult us for more information on adhesion.

Physical Characteristics (Typical Values)

Thickness	mm	0.48
Weight	g/cm²	0.18
Tensile Strength	N/cm ²	3500
Elongation Percentage	%	25
Coefficient of Linear Thermal Expansion	%(20→250°C)	2.8 (Thickness direction)
Friction Coefficient	-	0.05 – 0.15
Allowable Max. Load	MPa	50
Allowable Max. Speed	m/min	20
Allowable Max. PV value	MPa·m/min	100
Service Temp. Range °C	°C	-200 – +280

Example of Typical Forming

This material can be cut to any figure and formed to any

MS DMM01 Flanged Bushing (Bushing Inner Diameter:)

Designation of Part Number

MS 0303-6F

Please specify by Part No.
 This product is produced on order only.

		•	-		•																(Ur	nit: mm)
		nsion Mating Part	Bushin	g Dimension	ıs																	
Bushing I.D.	Houshing	Shaft	Flange	Flange	0.0	Wall					Part	Number	& Bush	ing Lengtl	n Toleranc	e ± 0.5						Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	O.D.	Thickness	3	4	5	7	1	3	10	12	15	20	25	30	35	40	50	
3	Φ4	Φ3	Φ6	0.5 ±0.05	Φ4	0.5 0	0303-6F	0304-6F	0305-6F	0307-6F	030	8-6F 03	10-6F									3
4	Φ5	Φ4	Φ8	0.5 ±0.05	Φ5	0.5 0	0403-8F	0404-8F	0405-8F	0407-8F	040	8-8F 04	10-8F	0412-8F	0415-8F							4
5	Φ6	Φ5	Φ10	0.5 ±0.05	Φ6	0.5 0		0504-10F	0505-10F	0507-10F	0508	3-10F 051	10-10F	0512-10F	0515-10F	0520-10F						5
6	Φ7	Φ6	Φ11	0.5 ±0.05	Φ7	0.5 0			0605-11F	0607-11F	0608	3-11F 061	10-11F	0612-11F	0615-11F	0620-11F						6
8	Φ9	Φ8	Φ14	0.5 ±0.05	Φ9	0.5 0				0807-14F	080	3-14F 081	10-14F	0812-14F	0815-14F	0820-14F	0825-14F	0830-14F				8
10	Φ11	Φ10	Φ16	0.5 ±0.05	Φ11	0.5 0				1007-16F	1008	3-16F 101	10-16F	1012-16F	1015-16F	1020-16F	1025-16F	1030-16F				10
12	Φ13	Φ12	Φ18	0.5 ±0.05	Φ13	0.5 0					1208	3-18F 121	10-18F	1212-18F	1215-18F	1220-18F	1225-18F	1230-18F	1235-18F	1240-18F		12
15	<i>Φ</i> 16	Φ15	Φ22	0.5 ±0.05	<i>Φ</i> 16	0.5 0					1508	3-22F 151	10-22F	1512-22F	1515-22F	1520-22F	1525-22F	1530-22F	1535-22F	1540-22F		15
18	Φ19	Φ18	Φ25	0.5 ±0.05	Φ19	0.5 0						181	10-25F	1812-25F	1815-25F	1820-25F	1825-25F	1830-25F	1835-25F	1840-25F		18
20	Φ21	Φ20	Φ29	0.5 ±0.05	Φ21	0.5 0						201	10-29F	2012-29F	2015-29F	2020-29F	2025-29F	2030-29F	2035-29F	2040-29F		20
25	Φ26	Φ25	Φ36	0.5 ±0.05	Φ26	0.5 0									2515-36F	2520-36F	2525-36F	2530-36F	2535-36F	2540-36F 2	2550-36F	25
30	Φ31	Φ30	Φ42	0.5 ±0.05	Φ31	0.5 0									3015-42F	3020-42F	3025-42F	3030-42F	3035-42F	3040-42F 3	3050-42F	30

Flange O.D.		Thickness	Ŏ.
Flange Thickness	 <>	Length	

(Unit: mm)

Polymer bearing materials DAFORCE A

A solid plastic sliding material comprising polytetrafluoroethylene (PTFE) resin mixed with a special filler.

This special filler gives DAIFORCE A excellent friction and wear-resistance characteristics at a

Thanks for excellent chemical-resistance properties, DAIFORCE A can be used with confidence in all kinds of lubricants as well as in corrosive liquids or seawater. Demonstrates suitable performance for a wide range of applications, including office automation equipment, industrial robots, automotive parts, and food packaging equipment.

Features

- 1.An excellent bearing that combines the superior surface characteristics of fluoropolymers with mechanical
- 2. The special filler material does not include metals or other hard substances and does not cause excessive wear to aluminum alloys or other soft materials.
- 3. Suitable for use in both dry and wet conditions.
- 4.Excellent chemical resistance thanks to the inert nature of fluoropolymers.
- 5. Special filler contains no materials that are hazardous to humans, making this product suitable for use in food processing applications. Conforms with Japan's Food Sanitation Act as well as standards and regulations for food products and additives.
- 6.Suitable for use in a wide range of ambient temperatures from -200 to +280°C.

Material: DFA01

PTFE mixed with a special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (durometer D-scale)	Coefficient of expansion between 25 and 150°C (×10-5/°C)
1.90 – 2.02	9 or more	100 or more	55 – 65	11

Tribological Characteristics (typical values)

Material properties	Coefficient of friction (µ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
DFA01	0.04 – 0.18	6.9	100	-200 – 280

Geometry

DAIFORCE A bearing dimensions

(in mm)

Cylindrical bushing

Name	Dimensional range
Inner diameter (d)	3- to 50-mm dia.
Outer diameter (D)	6- to 60-mm dia.
Length (L)	5 to 50 mm

Flanged cylindrical bushing

Name	Dimensional range
Inner diameter (d)	3- to 50-mm dia.
Outer diameter (D)	6- to 60-mm dia.
Outer flange diameter (F)	9- to 70-mm dia.
Length (L)	5 to 60 mm

Thrust washer

Name	Dimensional range
Inner diameter (d)	6 to 50 mm
Outer diameter (D)	12 to 80 mm
Thickness (t)	0.5 to 1.0 mm

A solid plastic sliding material comprising polytetrafluoroethylene (PTFE) mixed with glass fiber reinforcement.

This is a new product with a combination of glass-fiber reinforcing and special filler that gives high strength and excellent tribological properties compared with conventional PTFE sliding materials. Demonstrates suitable performance for a wide range of applications, including textile machinery, office automation equipment, machine tools, automotive parts, conveyor equipment, and food processing equipment.

Features

- 1. Glass-fiber reinforced PTFE offers high strength with no stick slip.
- 2.Offers excellent friction and wear-resistance characteristics.
- 3. Special filler contains no materials that are hazardous to humans, making this product suitable for use in food processing applications. Conforms with Japan's Food Sanitation Act as well as standards and regulations for food products and additives.
- 4.Suitable for use in a wide range of ambient temperatures from -200 to +280°C.

Material: DFG01

Glass-fiber-reinforced PTFE mixed with a special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (durometer D-scale)	Coefficient of expansion between 25 and 200°C (×10-5/°C)
2.10 – 2.30	9	80 or more	55 – 65	6 – 13

Sliding Characteristics (typical values)

Material properties	Coefficient of friction (μ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
DFG01	0.05 – 0.2	6.9	60	-200 – 280

Geometry

DAIFORCE G bearing dimensions

(in mm)

Cylindrical bushing

_			
	Name	Dimensional range	
	Inner diameter (d)	3- to 50-mm dia.	
	Outer diameter (D)	6- to 60-mm dia.	
	Length (L)	5 to 50 mm	

Flanged cylindrical bushing

Name	Dimensional range
Inner diameter (d)	3- to 50-mm dia.
Outer diameter (D)	6- to 60-mm dia.
Outer flange diameter (F)	9- to 70-mm dia.
Length (L)	5 to 60 mm

Thrust washer

Name	Dimensional range
Inner diameter (d)	6 to 50 mm
Outer diameter (D)	12 to 80 mm
Thickness (t)	0.5 to 1.0 mm

Polymer bearing materials DAIHYLON DHA

Fiber-reinforced nylon sliding material.

The addition of fiber reinforcing and special filler to nylon (polyamide or PA) provides a low coefficient of linear expansion as well as enhanced strength and tribological properties. Demonstrates suitable performance for a wide range of applications, including building materials, office automation equipment, textile machinery, and electronic devices.

Features

- 1.ls more heat resistant than polyoxymethylene and suitable for applications
- 2.Offers excellent friction and wear-resistance characteristics.
- 3. Suitable for injection molding of complex shapes.
- 4. Also available in grades suitable for use with soft axle materials.

Material: DHA01

PA66 mixed with glass-fiber-reinforcing and special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (HRM)	Coefficient of expansion (× 10 ⁻⁵ /°C)
1.37 – 1.47	160 or more (100 or more)	1 or more (2 or more)	77 – 93 (72 – 88)	2 – 6

NB: Figures in parenthesis are at 23°C and 50% water absorption.

Sliding Characteristics (typical values)

Material properties	Coefficient of friction (µ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
DHA01	0.1 – 0.3	6.9	30	-40 - 140

Dimensional range

Injection-molded bearings can be made to a wide variety of complex shapes.

Polymer bearing materials DAIHYLON DHR

A sliding material made from polyester elastomer mixed with a special filler.

This material is made by adding a special filler to extremely flexible polyester elastomer. Demonstrates suitable performance for a wide range of applications, including office automation equipment, textile machinery, automotive parts, conveyor equipment, and food packaging equipment.

Features

- 1.Offers a low coefficient of friction.
- 2. Suitable for use with soft axle materials.
- 3.Offers extremely high flexibility, suitable for use in countermeasures for percussive noise.
- 4. Offers superior absorption of contamination.
- 5. Suitable for injection molding of complex shapes.

Material: DHR01

Polyester elastomer mixed with a special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (Shore D-scale)	Coefficient of expansion (×10 ⁻⁵ /°C)
1.28 – 1.36	20 or more	100 or more	65 – 73	20

Sliding Characteristics (typical values)

Material properties	Coefficient of friction (µ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
DHR01	0.1 – 0.3	4.9	15	-40 – 60

Dimensional range

Injection-molded bearings can be made to a wide variety of complex shapes.

Polymer bearing materials DATHERMO DTP

A sliding material made from polyphenylene sulphide (PPS) mixed with a special filler. This material is made by adding a special filler to heat-resistant and chemical-resistant polyphenylene sulphide (PPS), which gives it frictional properties roughly identical to those of PTFE sliding materials. Demonstrates suitable performance for a wide range of applications, including office automation equipment, textile machinery, automotive parts, conveyor equipment, and food packaging equipment.

Features

- 1.Offers a low coefficient of friction.
- 2.Stable even when exposed to a variety of chemicals and solvents.
- 3. Suitable for injection molding of complex shapes.
- 4. Also available in grades suitable for use with soft axle materials.

Material: DTP11

PPS mixed with glass-fiber-reinforcing and special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (HRM)	Coefficient of expansion (× 10 ⁻⁵ /°C)
1.60 – 1.72	30 or more	2 or more	32 – 48	2-6

Sliding Characteristics (typical values)

Material properties	Coefficient of friction (µ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
DTP11	0.05 – 0.3	6.9	60	-40 – 200

Dimensional range

Injection-molded bearings can be made to a wide variety of complex shapes.

Polymer bearing materials DATHERMO DTK

A sliding material made from polyetheretherketone (PEEK) mixed with a special filler. Polyetheretherketone (PEEK) exhibits excellent heat resistance for a thermoplastic and when mixed with a special filler, offers resistance to both heat and chemicals as well as superior tribological characteristics. Demonstrates suitable performance for a wide range of applications, including automotive parts, sports equipment, and electronic devices.

Features

- 1.Offers excellent friction and wear-resistance characteristics.
- 2. Stable even when exposed to a variety of chemicals, lubricants, and solvents,
- 3. Suitable for use throughout a wide range of operating temperatures.
- 4. Suitable for injection molding of complex shapes.
- 5. Also available in grades suitable for use with soft axle materials.

Material: DTK01

PEEK mixed with glass-fiber-reinforcing and special filler

Material Characteristics (typical values)

Specific gravity	Tensile strength (MPa)	Elongation (%)	Hardness (HRM)	Coefficient of expansion (×10 ⁻⁵ /°C)
1.50 – 1.60	70 or more	2 or more	51 – 65	3 – 6

Sliding Characteristics (typical values)

	Material properties	Coefficient of friction (µ)	Maximum permissible load (MPa)	Maximum permissible speed (m/min)	Operating temperature range (°C)
Γ	DTK01	0.05 – 0.3	6.9	60	-40 – 260

Dimensional range

Injection-molded bearings can be made to a wide variety of complex shapes.

THERMALLOY

THERMALLOY is an oilless metal bearing into whose base metal a fine solid lubricant (usually consisting of carbon) is uniformly dispersed. THERMALLOY is supplied as an optimum bearing due to its design, and the selected combinations of base metal, solid lubricant and grain size which enable it to accommodate a wide range of operating conditions.

Features

- ① Can be used from extremely high temperatures to low temperatures (-200°C to +700°C depending on type of material)
- 2 Strong against mixed hard foreign particles
- 3 Can withstand high-speed operation in water and in seawater
- 4 Can withstand strong corrosive atmospheres
- (5) Although the bearing is designed as a dry bearing, when oil and grease are both provided its performance exceeds that of lubricated bearings.
- 6 The material is strong enough to withstand high loads
- The bearing adapts to the shaft smoothly from the beginning of operation and the slip stick phenomenon is prevented.
- ® Seizure is prevented and the surface of engaging component is not damaged.
- (9) Can be machined to special shapes
- 10 Can be used in a vacuum
- ① The material is a good conductor of heat and electricity, therefore heat is not accumulated in the bearing.
- ② The solid material allows sliding on multiple surfaces at the same time.
- (3) Compliant with the Dam Facility Technical Standards (Proposed) as a dispersed solid-lubricant type product.

Types

- 1 THERMALLOY D type
 This is a general grade bearing that can be applied to a wide range of operating conditions.
- ② THERMALLOY T type This is a high grade bearing suitable for use when high performance or particular operating conditions are necessary.
- ③ THERMALLOY BB type
 This is a thin compound layer type bearing consisting of THERMALLOY and steel plate.
 ★Stainless steel backing type is available.

 ④ THERMALLOY PV plate
- This is a thick plate type with steel backing.
 This type is standardized as finished product and in stock.
- (5) THERMALLOY pillow unit This is a bearing unit in which THERMALLOY T type is used for the spherical bearing section. This type is standardized as a pillow type and stock is available.

Distribution status of solid lubricant in THERMALLOY (microphotography)

x100

The fine solid lubricant is distributed on each surface as shown in the photographs below.

THERMALLOY Bronze B 1/6 6% weight (volume 18%) carbon

Flow pattern of carbon after running

x100

100

We offer bronze alloys as a standard material for THERMALLOY D type and also standard parts such as finished bushings. Lead-bronze products are only made to order and do not comply with RoHS or ELV restrictions.

Physical Properties

Material Symbol	Contents (Metal)	Carbon Amount	Density	Hardness	Compressive Strength	Max. Operating Temperature	Coefficient of Linear Thermal Expansion
B1/6	Cu-Sn	6wt%	7.0g/cm ³	Hv65	324MPa	20000	18×10-⁵/°C
B1/8	Cu-Sn	8	6.6	60	245	200°C	18×10 9 C

Bearing Characteristics

Alloy	Bronze					
Material Symbol	B1/6	B1/8				
Bearing Pressure MPa	10~30	1~10				
Allowable Sliding Speed m/min	4.2 m/min for 10 MPa 1.0 m/min for 30 MPa	72.0 m/min for 1 MPa 9.0 m/min for 10 MPa				
Wear Amount per Friction Distance of 1 km	9µm (2MPa•3.0m/min)	6µm (2MPa•3.0m/min)				
Hardness of Mating Surface	Above HB200					

- · The above mentioned bearing pressure is the value given at normal clearance. If the bearing is used with extremely large clearance, apply a lower bearing pressure.
- · The relationship between the bearing pressure and allowable sliding speed is decided through a balance of heat generation and heat radiation in the bearing.
- The amount of wear is affected by bearing pressure, sliding speed and the roughness of the shaft.

Material Dimension Table

(Unit: mm)

				(Offic. Hill)
Dimension Part Number	0.D.	I.D.	Length ⁺⁴ ₀	Material Code
BR12-20DM	12.50	_	20	B1/6 • B1/8
BR20-40DM	20.45	_	40	B1/6 · B1/8
BR30-50DM	30.55	_	50	B1/6 • B1/8
BR45-50DM	45.75	_	50	B1/8 Only
BR45-60DM	45.75	_	60	B1/6 Only
TU20- 8-30DM	20.45	7.00	30	B1/6 • B1/8
TU25-15-30DM	25.55	14.10	30	B1/6 • B1/8
TU30-15-50DM	30.55	14.10	50	B1/6 • B1/8
TU30-20-40DM	30.55	19.00	40	B1/6 · B1/8
TU35-25-40DM	35.60	24.00	40	B1/6 · B1/8
TU40-20-50DM	40.60	19.00	50	B1/8 Only
TU40-20-60DM	40.60	19.00	60	B1/6 Only
TU40-30-40DM	40.60	29.00	40	B1/6 · B1/8
TU45-25-50DM	45.75	24.00	50	B1/8 Only
TU45-25-60DM	45.75	24.00	60	B1/6 Only
TU45-35-40DM	45.75	34.05	40	B1/6 · B1/8
TU50-30-50DM	50.60	29.00	50	B1/8 Only
TU50-30-60DM	50.60	29.00	60	B1/6 Only
TU50-40-40DM	50.60	39.25	40	B1/6 · B1/8
TU55-45-50DM	55.60	44.05	50	B1/6 · B1/8
TU60-40-50DM	60.95	39.25	50	B1/8 Only
TU60-40-60DM	60.95	39.25	60	B1/6 Only
TU60-50-50DM	60.95	49.05	50	B1/6 · B1/8
TU65-55-50DM	65.65	54.05	50	B1/6 · B1/8
TU70-55-50DM	70.65	54.05	50	B1/8 Only
TU70-55-60DM	70.65	54.05	60	B1/6 Only
TU75-60-50DM	75.65	59.05	50	B1/6 · B1/8

Note: When ordering, please specify the material code and dimension number (example: "B1/6 TU40-30-40DM").

DM D type DM Series (Bushing Inner Diameter: 10 to 100 mm)

Designation of Part Number

Pb Free RoHS
ELV

Inner Chamfer (both sides)

Outer Chamfer (both sides)

Length

①If products with a shorter length are required, adjust the dimension of the length to suit.②If products with a longer length are required use multiple pieces as shown in the figure below.

(Bushing Inner Diameter: 10 to 100 mm)

DM 101610

Please specify by part number.

(Unit: mm)

Duching	Recommended Dime	ension Mating Part	Bushing	Dimensions												Duching
Bushing I.D.	Houshing	Shaft	O.D.	Wall					Part Numb	er & Bushing Ler	gth Tolerance	0 - 0.3		Chamfer		Bushing I.D.
	I.D.	Dia.	0.0.	Thickness	10	15	16	20	25	30	35	40	50	on O.D.	on I.D.	
10	Φ16H7 +0.018	φ10h7 _0.015	Φ10C7 +0.095	⁵ φ16r6 ^{+0.034} _{+0.023}	101610	101615		101620						C0.3	C0.3	10
12	Φ18H7 ^{+0.018}	φ12h7 _0.018		3 φ18r6 ^{+0.034} +0.023	121810	121815	121816	121820	12182	121830				C0.3	C0.3	12
13	Φ19H7 ^{+0.021}	φ13h7 _0 _0.018				131915		131920						C0.3	C0.3	13
14	Φ20H7 ^{+0.021}	φ14h7 _0.018	Φ14C7 +0.113	$\phi_{5}^{3} = \phi_{20}^{+0.041} + \phi_{10.028}^{+0.041}$		142015		142020						C0.3	C0.3	14
15	Φ21H7 +0.021	Φ15h7 _0.018	Φ15C7 +0.113	³ φ21r6 ^{+0.041} _{+0.028}		152115		152120	15212	5				C0.3	C0.3	15
16	Φ22H7 ^{+0.021}	Φ16h7 _0.018				162215	162216	162220	16222	162230	162235			C0.3	C0.3	16
18	Φ24H7 ^{+0.021}	φ18h7 _0.018	Φ18C7 +0.113	$\phi_{5}^{3} = \phi_{24r6}^{+0.041}_{+0.028}^{+0.041}$		182415		182420	18242	182430				C0.5	C0.5	18
20	Φ28H7 +0.021	Φ20h7 _0.021	Φ20C7 +0.13	¹ φ28r6 ^{+0.041} _{+0.028}		202815	202816	202820	20282	202830	202835	202840		C0.5	C0.5	20
20	Φ30H7 ^{+0.021}	Φ20h7 _0.021	Φ20C7 +0.13	¹ φ30r6 ^{+0.041} _{+0.028}				203020	20302	203030	203035	203040		C0.5	C0.5	20
22	Φ30H7 +0.021	Φ22h7 _0.021	Φ22C7 +0.13	¹ φ30r6 ^{+0.041} _{+0.028}				223020	22302	223030				C0.5	C0.5	22
25	Φ33H7 ^{+0.025}	Φ25h7 _0.021					253316	253320	25332	253330	253335	253340		C0.5	C0.5	25
25	Φ35H7 ^{+0.025}	Φ25h7 0 -0.021		¹ φ35r6 ^{+0.050} _{+0.034}				253520	25352	253530	253535	253540		C0.5	C0.5	25
28	Φ38H7 ^{+0.025}	Φ28h7 _0,021						283820		283830				C0.5	C0.5	28
30	Φ38H7 ^{+0.025}	Φ30h7 _0.021		¹ φ38r6 ^{+0.050} _{+0.034}				303820	30382	303830	303835	303840	303850	C0.5	C0.5	30
30	Φ40H7 +0.025	Φ30h7 _0,021		¹ φ40r6 ^{+0.050} _{+0.034}				304020	30402	304030	304035	304040	304050	C0.5	C0.5	30
					15	16	20	25	30	35	40	50	60			
31.5	Φ40H7 +0.025	Φ31.5h7 0 -0.025	φ31.5C7 ^{+0.095}	⁵ φ40r6 ^{+0.050} _{+0.034}					31403)	314040			C0.5	C0.5	31.5
32	Φ42H7 ^{+0.025}	Φ32h7 _0.025	Φ32C7 +0.113	$\frac{3}{5} \phi_{42r6}^{+0.050}$				324225	32423)	324240			C0.5	C0.5	32
35	Φ44H7 +0.025	Φ35h7 _0.025	Φ35C7 +0.113	3 φ44r6 +0.050 5 φ44r6 +0.034					35443	354435	354440	354450		C0.5	C0.5	35
35	Φ45H7 +0.025	Φ35h7 _0.025		³ φ45r6 ^{+0.050} _{+0.034}					35453	354535	354540	354550		C0.5	C0.5	35
40	Φ50H7 ^{+0.025}	Φ40h7 _0.025	Φ40C7 +0.113	³ φ50r6 ^{+0.050} _{+0.034}			405020	405025	40503	405035	405040	405050		C0.5	C0.5	40
45	Φ55H7 ^{+0.030}	Φ45h7 _0.025		³ φ55r6 ^{+0.060} _{+0.041}							455540	455550		C0.5	C0.5	45
50	Φ60H7 +0.030	φ50h7 0 -0.025	φ50C7 +0.113	$\phi_{5}^{3} \phi_{60}^{+0.060} + \phi_{0.041}^{+0.060}$							506040	506050	506060	C0.5	C0.5	50
55	Φ65H7 +0.030	Φ55h7 _0,030	Φ55C7 +0.13	$\phi_0^{1} = \phi_{65} + \phi_{100}^{+0.060}$							556540		556560	C0.5	C0.5	55
60	Φ75H7 +0.030	Φ60h7 _0.030	φ60C7 +0.13	$\phi 75r6^{+0.062}_{+0.043}$							607540		607560	C0.5	C0.5	60
65	Φ80H7 +0.030	Φ65h7 _0.030	Φ65C7 ^{+0.13}	¹ φ80r6 ^{+0.062} _{+0.043}							658040		658060	C1.0	C1.0	65
70	Φ85H7 +0.035	φ70h7 _0.030	φ70C7 +0.13	¹ φ85r6 ^{+0.073} _{+0.051}							708540		708560	C1.0	C1.0	70
75	Φ90H7 +0.035	Φ75h7 0 -0.030	Φ75C7 +0.13	ϕ 000 +0.073 +0.051							759040		759060	C1.0	C1.0	75
80	φ100H7 +0.035	Φ80h7 _0.030	Φ80C7 +0.13	¹ ₀ φ100r6 ^{+0.073} _{+0.051}							8010040		8010060	C1.0	C1.0	80
85	Φ105H7 +0.035		Φ85C7 +0.13	1 φ105r6 +0.076 +0.054							8510540		8510560	C1.0	C1.0	85
90	Φ110H7 +0.035		φ90C7 +0.13	¹ ₀ φ110r6 ^{+0.076} _{+0.054}							9011040		9011060	C1.0	C1.0	90
100	Φ120H7 +0.035	φ100h7 0 035	φ100C7 +0.13	1 φ120r6 +0.076 +0.054							10012040		10012060	C1.0	C1.0	100

Designation of Part Number

Please specify by part number.

				(Unit: mm)																	
	Recommended Dime	ension Mating Part	Bushing	Dimensions	S																
Bushing I.D.	Houshing	Shaft	0.0	Wall							Part Nur	nber & Bu	shing Len	gth Tolera	nce _ 0				Chamfer	Chamfer	Bushing I.D.
1.5.	I.D.	Dia.	O.D.	Thickness	6	8	10	12	16	20	25	30	35	40	45	50	55	60	on O.D.	on I.D.	1.5.
6	Φ10H7 ^{+0.015}	Φ6g6 -0.004 -0.012	Φ6 ^{+0.028} _{+0.013}	Φ10 ^{+0.021} _{+0.006}	0606	0608	0610												C0.3	C0.3	6
8	Φ14H7 ^{+0.018}	Φ8g6 -0.005 -0.014	Φ8 ^{+0.028} _{+0.013}	Φ14 ^{+0.021} _{+0.006}		0808	0810	0812	0816										C0.3	C0.3	8
10	Φ16H7 ^{+0.018}	Φ10g6 ^{-0.005} _{-0.014}	Φ10 ^{+0.034} _{+0.016}	Φ16 ^{+0.021} _{+0.006}			1010	1012	1016	1020									C0.3	C0.3	10
12	Φ18H7 ^{+0.018}	Φ12g6 =0.006 -0.017	Φ12 ^{+0.034} _{+0.016}	Φ18 ^{+0.021} _{+0.006}			1210	1212	1216	1220									C0.3	C0.3	12
16	Φ22H7 ^{+0.021}	Φ16g6 = 0.006 -0.017	Φ16 ^{+0.034} _{+0.016}	Φ22 ^{+0.021} _{+0.006}					1616	1620	1625								C0.3	C0.3	16
20	Φ30H7 ^{+0.021}	Φ20g6 =0.007	ϕ 20 $^{+0.041}_{+0.020}$	Φ30 ^{+0.021} _{+0.006}					2016	2020	2025	2030							C0.5	C0.5	20
25	Φ35H7 ^{+0.025}	Φ25g6 =0.007	ϕ 25 $^{+0.041}_{+0.020}$	Φ35 ^{+0.025} _{+0.009}						2520	2525	2530							C0.5	C0.5	25
30	Φ40H7 ^{+0.025}	Φ30g6 =0.007	Φ30 ^{+0.041} _{+0.020}	Φ40 ^{+0.025} _{+0.009}						3020	3025	3030	3035	3040					C0.5	C0.5	30
35	Φ45H7 ^{+0.025}	Φ35g6 -0.009 -0.025	Φ35 ^{+0.050} _{+0.025}	Φ45 ^{+0.025} _{+0.009}								3530	3535	3540	3545	3550			C0.5	C0.5	35
40	Φ50H7 ^{+0.025} ₀	Φ40g6 -0.009 -0.025	Φ40 ^{+0.050} _{+0.025}	φ50 ^{+0.025} _{+0.009}								4030	4035	4040	4045	4050			C0.5	C0.5	40
45		0 01020	ϕ 45 $^{+0.050}_{+0.025}$	φ55 ^{+0.033} _{+0.011}										4540	4545	4550			C0.5	C0.5	45
50	Φ62H7 ^{+0.030} ₀	Φ50g6 -0.009 -0.025	Φ50 ^{+0.050} _{+0.025}	Φ62 ^{+0.033} _{+0.011}										5040	5045	5050	5055	5060	C0.5	C0.5	50

Material Characteristics

	Materia	Symbol	Operating	Max. Bearing	Max. Sliding	Description
	Powder Carbon	Granulate Carbon	Temperature °C	Pressure	Speed	Bootinphon
* Lead Bronze Alloy	30/6 30/8 30/12	30/8P 30/12P	_50∼+200	49.0MPa 29.4 4.9	1.2m/min 30.0 60.0	Lead added bronze. General purpose material for use in air or water
Bronze A ll oy	144SB6 144SB8 144SB12	144SB8P 144SB12P	00 1200	49.0 29.4 4.9	1.2 30.0 60.0	Bronze with no lead added so can be used in food factory machinery. Can also be used in pure water
Special Bronze Alloy	144SB6W 144SB8W 144SB12W	144SB8PW 144SB12PW	-200~+350	39.2 19.6 2.9	1.2 30.0 60.0	Copper alloy which has excellent dimensional stability
Nickel-Copper -Iron Alloy	277NC8W 277NC12W 653NC8W		~+450 " ~+550	19.6 4.9 19.6	2.4 30.0 2.4	Excellent corrosion resistance, particularly in sea water
Iron Alloy	963/8W		~+600	19.6	2.4	Used when oxidisation of the bearing is a problem
Nickel Alloy	Ni98/8W Ni98/12W		~+600	19.6 4.9	2.4 18.0	Used for bearings for atomic energy related and anti-radiation use. Has good corrosion resistance and operation in liquid is preferable.
Iron Nickel	831FN10W	001EN110DW	o.⊥700	39.2	1.0	High temperature properties are good, strength is excellent.
Alloy	237NF10W	831FN12PW	~+700	39.2	1.2	High temperature and corrosion resistance properties are excellent.

- The values given for maximum bearing pressure and maximum sliding speed are merely for guidance, and may vary dependant on other conditions. In
- addition, usage of the bearing at both maximum bearing pressure and maximum sliding speed is likely to cause heat generation and wear.
- · Special material is prepared for use in a vacuum. Please consult us for more information.
- For usage below 200°C the W symbol is required only on lead-bronze alloy or bronze alloy materials.

Important Notes on the Determination of Material Codes

1) Each material code is composed of symbols that indicate the alloy series, the amount of graphite contained, and the state of graphite dispersal. When you have determined the material code from the upper table, we add a manufacturing-based classification code and indicate it on the label for the actual article and in the drawings.

Examples

Your selected code plus our added classification code. 30/8 -> 30/8-2Mo

Meaning of the code

In this example, "30/" is the alloy series, "8" is the percentage of powdered graphite, and "2Mo" is a code

144SB12PW -> 144SB12P-2MoW

In this example, "144SBW" is the alloy series, "12P"is the percentage of powdered graphite, and "2Mo" is a code we add.

- 2) The amount of graphite contained is normally 6%, 8%, 10%, or 12%.
- 3A powdered-graphite value of 8% and a granulated-graphite value of 12% (indicated by a "P" code) are nearly equivalent in terms of strength, and have an identical maximum specific load. Powdered graphite is effective in situations where contamination by external foreign matter does not occur, and granulated graphite is effective in situations susceptible to contamination by sand, iron filings, or the like.

Material Dimension Table (All Parts with Chamfering Margin)

Die No.	Outer diameter	Inner diameter	Length	Length	Length	Length	Remarks
B20	22	_				_	*1
B30	32	_				_	For powdered graphite and lead-bronze, bronze, and special bronze alloys of B40 up to B120,
B40	43	_					values of up to 84ℓ are possible. For other than the above, values are up to 64ℓ.
B60	63	_	44ℓ	54l	64l	84ℓ *1	For granulated graphite, values are up to 64ℓ for all dies.
B80	83	_					
B100	103	_					
B120	123	_					
R40	43	17				_	*2
R50	52	23				_	For powdered graphite and lead-bronze, bronze, and special bronze alloys other than R40, R50,
R60A	63	27					R60B, or R70, values of up to 84ℓ are possible. For other than the above, values are up to 64ℓ.
R60B	63	38				_	For granulated graphite, values are up to 64ℓ for all dies. For other than the above, values are up to 64ℓ .
R70	72	43				_	For granulated graphite, values are up to 64½ for all dies.
R80A	83	38					
R80B	83	47					
R90	93	57					
R100A	103	47					
R100B	103	67					
R110	113	77					
R120A	123	67					
R120B	123	87					
R130A	133	77	44ℓ	54l	64ℓ	84ℓ *2	
R130B	133	97	44k 	54l	04%	046	
R140A	143	87					
R140B	143	97					
R140C	143	107					
R150	153	117					
R160A	163	107					
R160B	163	127					
R170A	173	117					
R170B	173	137					
R180A	183	137					
R180B	183	147					
R190	193	157					
R200	204	167					
R220	224	186					
P65 P90	Height 65	Width 130	Thickness 29				For plate material (powdered graphite) and lead-bronze, bronze, and special bronze alloys, values of up to 34T are possible.

- · When ordering, please specify the material code and die dimensions.
- · All granulated-graphite material other than *1 or *2 is up to 64l.

Die Dimensions

- ①All T type material has cutting margins on the outer-diameter, inner-diameter, and length faces.
- 2 The minimum cutting margin is 2-4 mm for the diameter, and in the length direction is 4 mm on a side for iron or iron-nickel alloys and about 2 mm on a side for other materials.
- 3The material is round bar, hollow, and oblong.
- 4) We perform complete finishing before delivery. Products are delivered with a grip margin in some cases.

THERMALLOY TM type is made from a material that is highly resistant to oxidation and wear in high temperature oxidative environments.

Features

- 1) Highly resistant to oxidation and corrosion in high temperature oxidative environments (700°C max).
- 2 Resistant to wear.
- (3) Highly resistant to seizure at higher temperatures.
- (4) The bearing causes very little damage to the mating shaft.

Chemical Composition

FeCr + Cu + Solid lubricant

Mechanical Properties

Density (g/cm³)	Compressive strength (MPa)	Ring compression strength (MPa)
7.4	1630	980

Strength

Temperature (°C)	Hardness (Hv)	Tensile strength (MPa)
Room temperature	230	450
300	180	410
500	170	340
700	110	150

Coefficient of Linear Thermal Expansion

Temperature (°C)	Coefficient of linear thermal expansion (×10 ⁻⁶ /°C)
50 – 300	16.5
50 – 500	16.6
50 – 700	17.0

Oxidation Resistance

Heating time (hrs.)	Weight change rate (%)
5	0.01
10	0.05
25	0.05
50	0.05
100	0.06

Sliding properties at higher temperatures (THERMALLOY TM type TMF2-S)

Test conditions

Specific load: 2.45MPa Speed: 1.2m/min Material of mating part : SUS303 Duration: 30min

		Materia	al weig	ht change	of matin	g part
	2			T1.4	F0.0	
_	1	-		/IM	F2-S	
rict	0					
Friction Coefficient(µ)	-1		-	****		
Oet						
ficie	- 2	ŀ				
nt()	- 3	-		SUH3/		
	-4	_				
	- 5 40		500	600	700	800
	40	00				800
			Test	temperature	(°C)	

Metallic bearing materials THERMALLOY BB type (solid lubricant dispersal bimetal bearing)

THERMALLOY BB type is a steel backed material with a D type material lining (B1/6, B1/8 or BL2/8). It is suitable for use under high loads in a limited space.

Dimensions of materials and wrapped bush for sliding plates have been standardized.

BB type Materials

Alloy	Material symbol	Backing		
Bronze based	BB1/6			
Bronze based	BB1/8	Steel		
Lead bronze based	BBL2/8			

Optional bearings backed with stainless steel are also available.

Standard Dimensions of Plates (Custom-made)

(Unit: mm)

Part No.	Overall thickness	Alloy thickness	Width ^{+0.2}	Length ^{+5.0}
BBL2/8-P1.5	1.5±0.05	0.4	70	
BBL2/8-P2	2.0±0.05	0.6	70	
BBL2/8-P2.5	2.5±0.05	0.9	120	500
BBL2/8-P3	3.0±0.05	1.0	120	500
BBL2/8-P5	5.0±0.075	1.0	120	
BBL2/8-P8	8.0±0.075	1.3	110	

Surface of

BM BB type BM Series (Bushing Inner Diameter: 10 to 70 mm)

Designation of Part Number

BM 1010

Bushing Length Nominal I. D. of Bushing **Product Symbol**

Please specify by part number.

mating part Wall thickne 0.D. Rmax=(2-8)S Length

		Unit: mm)																
	Recommended Dimer	nsion Mating Part	Bushing [Dimensions	3													
Bushing I.D.	Houshing	Shaft	O.D.	Wall	Alloy						Part Numb	oer & Bushi	ng Length 1	olerance ±	0.25	Chamfer	Chamfer	Bushing I.D.
	I.D.	Dia.		Thickness	Thickness	10	15	20	25		30	40	50	60	70	on O.D.	on I.D.	
10		Φ10h7 ⁰ _{-0.015}			0.5	1010	1015									0.6 x 20°	C0.2	10
12	Φ14H7 ^{+0.018} ₀	Φ12h7 _0.018	Φ14 ^{+0.051} _{+0.033}	1.0 -0.013	0.5	1210	1215									0.6 x 20°	C0.2	12
14	Φ16H7 ^{+0.018}	Φ14h7 _0.018	ϕ 16 $^{+0.051}_{+0.033}$	1.0 -0.013	0.5	1410	1415									0.6 x 20°	C0.2	14
15	Φ17H7 ^{+0.018}	Φ15h7 ⁰ _{-0.018}	ϕ 17 $^{+0.051}_{+0.033}$	1.0 -0.013	0.5	1510	1515		1525							0.6 x 20°	C0.2	15
16	Φ18H7 ^{+0.018}	Φ16h7 _0.018	Φ18 ^{+0.051} _{+0.033}	1.0 -0.013	0.5	1610	1615	1620	1625							0.6 x 20°	C0.2	16
18	Φ20H7 ^{+0.021}	Φ18h7 ⁰ _{-0.018}	Φ20 ^{+0.062} _{+0.041}	1.0 -0.013	0.5	1810	1815	1820	1825							0.6 x 20°	C0.2	18
20	Φ23H7 ^{+0.021}	Φ20h7 _0.021	Φ23 ^{+0.062} _{+0.041}	1.5 -0.013	0.5		2015	2020	2025		2030					1.0 x 20°	C0.5	20
22	Φ25H7 ^{+0.021}	Φ22h7 _0.021	Φ25 ^{+0.062} _{+0.041}	1.5 -0.013	0.5						2230					1.0 x 20°	C0.5	22
24	Φ27H7 ^{+0.021}	Φ24h7 _0.021	Φ27 ^{+0.062} _{+0.041}	1.5 -0.013	0.5		2415	2420	2425		2430					1.0 x 20°	C0.5	24
25	Φ28H7 ^{+0.021}	Φ25h7 _{-0.021}	Φ28 ^{+0.062} _{+0.041}	1.5 -0.013	0.5		2515		2525		2530					1.0 x 20°	C0.5	25
28	Φ32H7 ^{+0.025}	Φ28h7 _0.021	Φ32 ^{+0.073} _{+0.048}	2.0 -0.013	0.6						2830					1.0 x 20°	C0.5	28
30	Φ34H7 ^{+0.025}	Φ30h7 _0.021	Φ34 ^{+0.073} _{+0.048}	2.0 -0.013	0.6			3020			3030	3040				1.0 x 20°	C0.5	30
32	 	Φ32h7 _{-0.025}		2.0 -0.013	0.6							3240				1.0 x 20°	C0.5	32
35	Φ39H7 ^{+0.025}	Φ35h7 _0.025	Φ39 ^{+0.073} _{+0.048}	2.0 -0.013	0.6			3520			3530		3550			1.0 x 20°	C0.5	36
36	 	Φ36h7 _{-0.025}		2.0 -0.013	0.6							3640				1.0 x 20°	C0.5	36
38	Φ42H7 ^{+0.025}	Φ38h7 _0_0.025	Φ42 ^{+0.079} _{+0.054}	2.0 -0.013	0.6							3840				1.0 x 20°	C0.5	38
40		Φ40h7 _0.025		2.0 -0.013	0.6			4020			4030		4050			1.0 x 20°	C0.5	40
42		Φ42h7 _0_0.025		2.0 -0.013	0.6								4250			1.0 x 20°	C0.5	42
45		Φ45h7 _0_0.025			0.6						4530		4550	4560		1.0 x 20°	C0.5	45
50		Φ50h7 _0_0.025		2.5 ^{-0.020} -0.045	0.6							5040	5050	5060		1.0 x 20°	C0.5	50
55		Φ55h7 _0 _{0.030}			0.6							5540				1.0 x 20°	C0.5	55
60		Φ60h7 _0.030			0.6							6040		6060	6070	1.0 x 20°	C0.5	60
65		Φ65h7 _0.030			0.6								6550		6570	1.0 x 20°	C0.5	65
70		Φ70h7 _0.030			0.6								7050		7070	1.0 x 20°	C0.5	70

Notes: 1. Tolerances for length and outside diameters are determined separately for bushing with an inside diameter of $\geq \varphi$ 160. 2. When ordering, specify the alloy type (BB1/6, BB1/8 or BBL2/8) and the part number.

- 3. If press-fitting a BB type wrapped bush with allowance into a housing and then finishing its inside diameter, the bushing may be supplied with finishing allowance between 0.2mm and 0.3mm in diameter. Please ensure that you add "SS" after the part No. (e.g. BB1/8, BM5060SS).
- 4. The BBL2/8 alloy is not regulated by RoHS/ELV.

Please specify by part number.

			(Unit: I						nit: mm)		
	Recommended Dime	nsion Mating Part	Bushing I	Dimensior	าร						
Bushing I.D.	Houshing	Shaft	0.0	Wall	Alloy	Part Number 8	Bushing Lengt	h Tolerance ± 0.25	Chamfer	Chamfer	Bushing I.D.
	I.D.	Dia.	O.D.	Thickness	Thickness	60	80	100	on O.D.	on I.D.	
75	Φ81H7 ^{+0.035}	Φ75h7 _0_0.030	Φ81 ^{+0.126} _{+0.091}	3.0 ^{-0.020} _{-0.045}	0.9	7560	7580	75100	1.0 x 20°	C0.5	75
80	Φ86H7 ^{+0.035}	Φ80h7 _0.030	Φ86 ^{+0.126} _{+0.091}	3.0 ^{-0.020} _{-0.045}	0.9	8060	8080	80100	1.0 x 20°	C0.5	80
85	Φ91H7 ^{+0.035}	Φ85h7 _0.035	Φ91 ^{+0.126} _{+0.091}	3.0 ^{-0.020} _{-0.045}	0.9	8560	8580	85100	1.0 x 20°	C0.5	85
90	Φ96H7 ^{+0.035}	Φ90h7 _0.035	Φ96 ^{+0.126} _{+0.091}	3.0 ^{-0.020} _{-0.045}	0.9	9060	9080	90100	1.0 x 20°	C0.5	90
95	φ101H7 ^{+0.035}		Φ101 ^{+0.139} _{+0.104}	3.0 ^{-0.020} _{-0.045}	0.9	9560	9580	95100	1.0 x 20°	C0.5	95
100	Φ106H7 ^{+0.035}	Φ100h7 _0.035	Φ106 ^{+0.139} _{+0.104}	3.0 -0.025 -0.050	0.9	10060	10080	100100	1.0 x 20°	C0.5	100
105	Φ111H7 ^{+0.035}	Φ105h7 _0.035	Φ111 ^{+0.139} _{+0.104}	3.0 -0.025 -0.050	0.9	10560	10580	105100	1.0 x 20°	C0.5	105
110	Φ116H7 ^{+0.035}	Φ110h7 _0.035	Φ116 ^{+0.139} _{+0.104}	3.0 -0.025 -0.050	0.9	11060	11080	110100	1.0 x 20°	C0.5	110
115	Φ121H7 ^{+0.040}	Φ115h7 _0_0.035	Φ121 ^{+0.162} _{+0.122}	3.0 ^{-0.025} -0.050	0.9	11560	11580	115100	1.0 x 20°	C0.5	115
120	Φ126H7 ^{+0.040}	Φ120h7 _0.035	Φ126 ^{+0.162} _{+0.122}	3.0 ^{-0.025} -0.050	0.9	12060	12080	120100	1.0 x 20°	C0.5	120
125	φ131H7 ^{+0.040}	Φ125h7 _0.040	Φ131 ^{+0.162} _{+0.122}	3.0 -0.025	0.9	12560	12580	125100	1.0 x 20°	C0.5	125
130	Φ136H7 ^{+0.040}	Φ130h7 _0.040	Φ136 ^{+0.162} _{+0.122}	3.0 -0.025 -0.050	0.9	13060	13080	130100	1.0 x 20°	C0.5	130
135	Φ141H7 ^{+0.040}	Φ135h7 _0_0.040	Φ141 ^{+0.174} _{+0.134}	3.0 ^{-0.025} -0.050	0.9	13560	13580	135100	1.0 x 20°	C0.5	135
140	Φ146H7 ^{+0.040}	Φ140h7 _0.040	Φ146 ^{+0.174} _{+0.134}	3.0 -0.025 -0.050	0.9	14060	14080	140100	1.0 x 20°	C0.5	140
145	Φ151H7 ^{+0.040}	Φ145h7 _0.040	Φ151 ^{+0.174} _{+0.134}	3.0 ^{-0.025} -0.050	0.9	14560	14580	145100	1.0 x 20°	C0.5	145
150	Φ156H7 ^{+0.040}	Φ150h7 _0.040	Φ156 ^{+0.174} _{+0.134}	3.0 -0.025 -0.065	0.9	15060	15080	150100	1.0 x 20°	C0.5	150
160	Φ166H7 ^{+0.040}	Φ160h7 _0.040	<i>Φ</i> 166	3.0 ^{-0.025} -0.065	0.9	16060	16080	160100	1.0 x 20°	C0.5	160
180	Φ186H7 ^{+0.046}	Φ180h7 _0.040	Φ186	3.0 ^{-0.025} -0.065	0.9	18060	18080	180100	1.0 x 20°	C0.5	180
200	Φ206H7 ^{+0.046}	Φ200h7 _0.046	Φ206	3.0 ^{-0.025} -0.065	0.9	20060	20080	200100	1.0 x 20°	C0.5	200
220	Φ226H7 ^{+0.046}	Φ220h7 _0.046	Φ226	3.0 ^{-0.025} -0.065	0.9	22060	22080	220100	1.0 x 20°	C0.5	220
250	Φ256H7 ^{+0.052}	Φ250h7 _0 _{0.046}	Φ256	3.0 -0.025	0.9	25060	25080	250100	1.0 x 20°	C0.5	250
280	Φ286H7 ^{+0.052}	Φ280h7 _0.052	Φ286	3.0 ^{-0.025} -0.065	0.9	28060	28080	280100	1.0 x 20°	C0.5	280
300	Φ306H7 ^{+0.052}	Φ300h7 _0.052	Φ306	3.0 ^{-0.025} -0.065	0.9	30060	30080	300100	1.0 x 20°	C0.5	300

Notes: 1. Tolerances for length and outside diameters are determined separately for bushing with an inside diameter of ≥ \$\phi\$160.

2. When ordering, specify the alloy type (BB1/6, BB1/8 or BBL2/8) and the part number.

3. If press-fitting a BB type wrapped bush with allowance into a housing and then finishing its inside diameter, the bushing may be supplied with finishing allowance between 0.2mm and 0.3mm in diameter. Please ensure that you add "SS" after the part No. (e.g. BB1/8, BM5060SS).

4. The BBL2/8 alloy is not regulated by RoHS/ELV.

Metallic bearing materials

THERMALLOY PV plate (solid lubricant dispersed bimetal plate)

A bimetal sliding plate made from an alloy containing solid lubricant sintered onto a steel backing.

Features

- ① Can be used without a lubricant supply.
- (2) Capable of withstanding higher loads.
- (3) Can be used at high temperatures.
- (4) Protected from seizure to prevent damage to the surface of the mating part.
- (5) The performance is further improved with the use of a
- (6) A variety of standard products are available for quick
- (7) The plate can be additionally machined using ordinary machinery.

Dispersion of solid lubricant (micrograph)

A high performance, metallic bearing alloy based on bronze in which a numerous number of solid lubricant particles are uniformly dispersed.

Physical properties (alloy)

Chemical composition	Cu-Sn-Gr (10% graphite by weight)
Density	6.4
Hardness	HB50
Compressive strength	343MPa
Max. service temperature	250°C
Coefficient of linear thermal expansion*	18×10 ⁻ 6/°C

*The coefficient of linear thermal expansion of the whole alloy is equivalent to that of steel.

Bearing Characteristics

Allowable max. specific load	50MPa
Allowable max. speed	6m/min
Max. service temperature	250°C
Allowable max. PV value	63Pa∙m/min
Friction coefficier	t 0.10 – 0.20

Specific load MPa	1	5	10
Speed m/min	0.6	3	0.3
Wear depth (mm) per 1km of friction distance	0.004	0.015	0.008

Mounting Hole Bolt

an alloy thickness of 1.25±0.25.

(Unit: mm) Bolt type ____2±0.4

Mounting spot-faced hole

H or S OO OO

Width (W)

Mounting method U: Screwed from the top
L: Screwed from the bottom Length (L)

by part number.

		— Plate thickness	H:10mr S:20mr					
	Doub	· No		Dimensions	6	Mountii	ng Hole Pit	ch
	Pari	: No.	Width (W)	Length (L)	Thickness (T)	а	b	C
35	10011		35	100	10	60	_	

		Part	No			Dillielisions		IVIOUITII	ilg Hole Fit	CIT						Woulding Ho	e Doit	Snape	
		rait	140.		Width (W)	Length (L)	Thickness (T)	а	b	С	d	е	f	ℓ1	l ₂	Bolt Type	Quantity	Type	
Н	35	100U			35	100	10	60	_	_	_	-	_	20	_		2	А	
Н	35	150U			35	150	10	55	55	_	_	-	_	20	_	Type U:	3	А	
Н	35	200U			35	200	10	55	50	55	_	_	_	20	_	ϕ 9 through,	4	А	
Н	35	250U			35	250	10	70	70	70	-	-	-	20	-	Ф16 spot-faced,6 deep	4	А	
н	35	300U			35	300	10	65	65	65	65	-	_	20	_	σ ασορ	5	А	
Н	35	350U			35	350	10	80	75	75	80	-	-	20	_		5	А	
S	35	100U	5 3	5 100L	35	100	20	60	_	_	_	_	_	20	_	Type U:	2	А	
S	35	150U	5 3	5 150L	35	150	20	55	55	_	_	-	_	20	_	ϕ 9 through,	3	А	
S	35	200U	5 3	5 200L	35	200	20	55	50	55	_	_	_	20	_	ϕ 14 spot-faced, 9 deep	4	А	
S	35	250U	5 3	5 250L	35	250	20	70	70	70	_	-	_	20	_	Type Ľ:	4	А	
S	35	300U	5 3	5 300L	35	300	20	65	65	65	65	_	_	20	_	M8 tapped,	5	А	
S	35	350U	5 3	5 350L	35	350	20	80	75	75	80	-	_	20	_	13 deep	5	А	
S	48	75U	S 4	8 75L	48	75	20	45	_	_	_	-	_	15	_		2	А	
S	48	100U	S 4	8 100L	48	100	20	50	_	_	-	-	-	25	-	Type U:	2	А	
S	48	125U	S 4	8 125L	48	125	20	75	_	_	_	-	_	25	_	ϕ 11 through,	2	А	
S	48	150U	5 4	8 150L	48	150	20	100	_	-	_	-	-	25	_	ϕ 17.5 spot-faced, 11 deep	2	А	
S	50	75U	S 5	0 75L	50	75	20	45	-	-	-	-	_	15	_	Type L:	2	А	
S	50	100U	S 5	0 100L	50	100	20	50	_	-	_	-	_	25	_	M10 tapped, 13 deep	2	А	
S	50			0 125L	50	125	20	75	_	_	_	_	_	25	_	10 ασορ	2	А	
S	50			0 150L		150	20	100	_	_	_	-	_	25	_		2	А	
S	75			5 75L	75	75	20	45	_	_	_	_	_	15	_		2	А	
S	75			'5 100L	75	100	20	50	-	-	_	-	-	25	-		2	А	
S	75			5 125L	75	125	20	75	_	_	_	-	-	25	_		2	А	
S	75			5 150L	75	150	20	100	-	-	-	-	-	25	-		2	А	
	75		5 7		75	200	20	150	_	_	_	_	_	25	_		2	A	
	00		S 10		100	100	20	-	-	-	_	50	50	25	25	Type U:	4	В	
		125U				125	20	_	_	_	_	75	50	25	25	ϕ 11 through,	4	В	
				0 150L		150	20	-	_	-	_	100	50	25	25	ϕ 17.5 spot-faced, 11 deep	4	В	
				0 200L		200	20		_	_	_	150	50	25	25	Type L:	4	В	
				0 250L		250	20	_	_	_	_	200	50	25	25	M10 tapped, 13 deep	4	В	
				5 150L		150	20	_	_	_	_	100	50	25	37.5	[4	В	
				5 200L		200	20	_	_	_	_	150	50	25	37.5		4	В	
				5 250L		250	20	_	_	_	_	200	50	25	37.5		4	В	
				0 150L		150	20	_	_	_	_	100	100	25	25		4	В	
				0 200L		200	20		_	_	_	150	100	25	25		4	В	
5 1	50	250U	S 15	0 250L	150	250	20		_		_	200	100	25	25		4	В	

Metallic bearing materials THERMALLOY pillow unit) (solid lubricant dispersed pillow unit)

The pillow unit is a lubrication free, self-aligning bearing unit that comprises of an outer ring made from the high performance bearing material THERMALLOY and a stainless steel inner ring incorporated as a bearing into a stainless steel bearing box.

Features

- 1.Can be used without a lubricant supply.
- 2.Can be used in water, seawater, vapour or water splashes.
- 3. Applicable within a wide temperature range.
- 4. Durable against intrusion of dust, sand or foreign
- 5. Suitable for use with rotary motion, vibratory motion, reciprocation and intermittent operation.
- 6. Able to move at extremely low speed compared with the solid lubricant embedded type and particularly superior with respect to minute motion.
- 7. Capable of withstanding higher loads and supporting radial and thrust loads.
- 8. Superior fretting resistance to that of embedded solid lubricant and ball bearing types.

Construction and Components

Part No.	Part name	Material							
1	Bearing box	SCS13 (cast stainless steel)							
2	Outer ring	144SB12P (THERMALLOY)							
3 Inner ring SUS304 (stainless steel)									
(Attached screws are also made of stainless steel.)									

- Outer rings for standard units are made of 144SB12P (THERMALLOY), but may also be made of another bearing material.
- The pillow and diamond flange units and their components for shaft diameters between 20 and 50mm have been standardized. Please contact us if you require specifications other than those given above.

Static Breaking Strength of Bearing Box

Loading direction										
Α	В	С	E							
W×2	W×2.5	W×4	W×1							

Mounting in a Hot Place

If the shaft expands thermally (in the axial direction) at high temperatures it is recommended that the shaft be mounted as shown below.

Securing The Outer Ring For The Bearing

Tighten the set screw and nut in the following order.

- 1.Rotate the set screw until it makes contact with the bottom of the outer ring hole.
- 2.Rotate the set screw by 90° in the reverse direction to provide a clearance above the bottom of the hole.
- 3. Tighten the nut as shown in 2.

90° reverse rotation

Designing Conditions

Operating Ranges

Shaft diameter	Nominal No.	Max. radial load "W"	Max. rotating speed "N"	Allowable "W-N" value	Operating temperature	Max. rotating speed " α "
mm	_	N{kgf}	rpm	N•rpm{kgf•rpm}	°C	Degrees
20	204	9,800{1,000}	150	3.12×10 ⁵ {31,800}		7
25	205	11,800{1,200}	120	3.43×10 ⁵ {35,000}		6
30	206	16,700{1,700}	100	3.90×10 ⁵ {39,800}	-50 – +200	7
35	207	20,600{2,100}	90	4.21×10 ⁵ {43,000}	00 1200	7
40	208	24,500{2,500}	80	4.53×10 ⁵ {46,200}		6
45	209	27,500{2,800}	70	4.53×10 ⁵ {46,200}		6
50	210	30,400{3,100}	70	4.68×10 ⁵ {47,700}		6

- •The "W," "N" and "W-N" values are measured in the air at an ordinary temperature without a lubricant supply.
- •When using the unit at temperatures above 100°C as a guide the "N" and "W-N" values should be half of that of the service range.
- •When the unit is used with a lubricant, a smaller load, at lower speed, operated intermittently or for a shorter time it may be used above the service range. Please consult us.
- •When the unit is to be used out of the specified service range or in a special atmosphere (in a vacuum, gas or chemical solution), it may be made from other materials. Please consult us.
- •Bearing boxes made of gray cast iron (FC) are also available.

Service Life

The service life of the THERMALLOY pillow unit is generally determined by the wear to the inside diameter of the THERMALLOY. The wear greatly depends on the conditions of use. In other words it is affected by many factors including load, rotating speed, temperature, lubrication status, atmosphere and intrusion of foreign particles, so it is very difficult to calculate with a formula. Use the test data shown on the right as a reference when designing the THERMALLOY pillow unit.

Dimensions of Bearings for units

Designation of Part Number

UD2 OT1

UD2 04 T1

Please specify by part number.

(Unit: mm)

Part No.						D	imensi	ons				
of bearing	d	D	do	Ве	Bi	n	m	С	df	Bf	G	ds
UD204T1	20	47	33	20	31	12.7	18.3	1.5	43	8.3	4	M5×0.8
UD205T1	25	52	38	22	34	14.3	19.7	1.5	48	8.7	4.5	M5×0.8
UD206T1	30	62	46	25	38.1	15.9	22.2	1.5	58	9.7	5	M6×1
UD207T1	35	72	53	27	42.9	17.5	25.4	2	68	11.9	6	M8×1.25
UD208T1	40	80	60	29	49.2	19	30.2	2	75	15.7	8	M8×1.25
UD209T1	45	85	65	29	49.2	19	30.2	2	80	15.7	8	M8×1.25
UD210T1	50	90	70	30	51.6	19	32.6	2	85	17.6	9	M10×1.5

Bearings with specifications and dimensions other than those given above are also available. Please consult us.

Dimensions of pillow units

Designation of Part Number

UDSP2 S1T1

UDSP2 04 S1T1

Please specify by part number.

		†			45°	
Si	- d w	h g	\$2 	e a		

/I I		mm)	
	ınıt.	mm	١ .

	Part No. Dimensions										Nominal size of	Part No.	Part No.			
	of bearing	d	h	а	е	b	S1	S2	g	W	j	Bi	n	mounting bolt	of bearing	of bearing box
U	DSP20451T1	20	33.3	127	95	30	13	19	9	64	39	31	12.7	M10	UD204T1	SP204S1
U	DSP20581T1	25	36.5	140	105	30	13	19	10	70	42	34	14.3	M10	UD205T1	SP205S1
U	DSP20651T1	30	42.9	165	121	36	17	21	11	82	50	38.1	15.9	M14	UD206T1	SP206S1
U	DSP20751T1	35	47.6	167	127	38	17	21	12	92	46	42.9	17.5	M14	UD207T1	SP207S1
U	DSP20851T1	40	49.2	184	137	40	17	21	12	98	50	49.2	19	M14	UD208T1	SP208S1
U	DSP20951T1	45	54	190	146	40	17	21	13	105	50	49.2	19	M14	UD209T1	SP209S1
U	DSP21051T1	50	57.2	206	159	45	20	22	14	112	56	51.6	19	M16	UD210T1	SP210S1

Bearings with specifications and dimensions other than those given above are also available. Please consult us.

Dimensions of Diamond Flange units

Designation of Part Number

UDSFL2 S1T1

UDSFL2 04 S1T1

Please specify by part number.

Part No.		Dimensions											Part No.	Part No.
of bearing	d	а	е	i	g	- 1	S	b	Z	Bi	n	size of mounting bolt	of bearing	of bearing box
UDSFL204S1T1	20	113	90	15	10	25.5	12	60	33.3	31	12.7	M10	UD204T1	SFL204S1
UDSFL205S1T1	25	130	99	16	10	27	16	68	35.7	34	14.3	M14	UD205T1	SFL205S1
UDSFL206S1T1	30	148	117	18	10	31	16	80	40.2	38.1	15.9	M14	UD206T1	SFL206S1
UDSFL207S1T1	35	161	130	19	11	34	16	90	44.4	42.9	17.5	M14	UD207T1	SFL207S1
UDSFL208S1T1	40	175	144	21	11	36	16	100	51.2	49.2	19	M14	UD208T1	SFL208S1
UDSFL209S1T1	45	188	148	22	13	38	19	108	52.2	49.2	19	M16	UD209T1	SFL209S1
UDSFL210S1T1	50	197	157	22	13	40	19	115	54.6	51.6	19	M16	UD210T1	SFL210S1

Bearings with specifications and dimensions other than those given above are also available. Please consult us.

Metallic bearing materials DAISLIDE

DAISLIDE is a copper based bearing for heavy load applications into which solid lubricant plugs are embedded.

Features

- 1.Maintenance-free, requires no lubrication
- 2.Excellent wear resistance properties. Excellent wear resistance properties are exhibited in applications where oil film formation is difficult such as reciprocating, intermittent or oscillating motions under conditions of high load and low speed.
- 3.Friction coefficient is low.
- 4.Can be used at a range of temperatures
- 5. Free design is possible on the shape and the size.

6.Excellent corrosion and chemical resistance. This bearing can be used in river or sea water, in special liquids where chemical resistance of the metal base and solid lubricant is needed, and in gas where oil supply is difficult.

In an acid or alkaline atmosphere properties may differ depending on the type, density and humidity. Please do a sample test or consult us.

7.Excellent impact resistance

Material Type

1.Base Metal

Three types of base metal are offered:

B:Bronze (BC)

S:High Strength Brass (HBsC)

K:High Strength Special Copper Alloy

2. Solid Lubricant Plug

(1)Arrangement of solid lubricant plug

The solid lubricant plugs are aligned obliquely from the axial in line direction to enable the bearing to obtain a thin film of lubricant during movement in the axial direction.

(2) Types of solid lubricant plug

1.Plug A is for general use and is usually kept in stock. 2.Plug L is for use in water and sea water and is made

to order.

Special plugs are prepared for applications in water or seawater, where electrolytic corrosion is anticipated due to the material of housing and shaft.

3. Combination with Base Metal

	Plug Symbol		Α		L				
В	ase Metal	High Strength Brass	Bronze	High Strength Special Copper Alloy	High Strength Brass				
Г		НА							
		SAF							
١,	Merchan	SAFG	*D.A	KA	*SL				
	dise	TA	*BA	NA	SL				
	Symbol	PA							
		LA							
	Use	Gen	eral	High Load	In Water, in Seawater				
	Stock	Standard Stock Available	made to order						

Physical Properties

Characteristics of Base Metal

ltem	Unit, etc	DAISLIDE B (Bronze Base)	DAISLIDE S (High Strength Brass Base)	DAISLIDE K (High Strength Special) Copper Alloy Base
Specific Gravity		8.7	8.2	_
Coefficient of Linear Thermal Expansion	×10-6/°C	16 – 18	16 – 20	16 – 20
Heat Transfer Coefficient	cal/sec°C·cm	0.11 – 0.15	0.09 – 0.13	_
Tensile Strength	N/mm²	Above 196	Above 690	Above 760
Impact Strength	N·m/cm ²	15	19	_
Hardness	НВ	60 – 80	Above 200	Above 240
Modulus of Longitudinal Elasticity	kN/mm²	96	98 – 137	-
Compression Yield Strength (0.1%)	N/mm²	_	Above 350	_
Solid Lubricant Area on Slide Surface	%		25 – 30	
Elongation	%	Above 15	Above 12	Above 4

Bearing Characteristics

Туре	Base Metal	Oil Supply Condition	Allowable Max. Load *MPa	Allowable Max. Speed *m/min	Allowable Max. PV Value *MPa·m/min	Limit Operating Temperature *°C
		No Oil Supply	14.7	25	58.8	250
DAISLIDE	Bronze	Grease Cup Type Periodic Lubrication	14.7	150	98.1	250
В		Oil Drip Lubrication	14.7	250	196.1	250
			49.0	15	196.1	Normal Temperature
DAISLIDE	High Strength	No Oil Supply	24.5	15	98.1	250
S	Brass	Grease Cup Type Periodic Lubrication	24.5	50	147.1	250
	Brass	Oil Drip Lubrication	24.5	100	196.1	250
DAISLIDE	High Strength	No Oil Supply	73.0	15	99.0	250
K	Special Copper Alloy	Grease Cup Type Periodic Lubrication	73.0	30	196.1	250

* When the bearing is to be used at temperatures exceeding 100°C it is necessary to provide a margin on the PV value at the design stage.

* In the case of high strength brass base metal and the high strength special copper alloy base metal, depending on the conditions of usage, for example when the bearings are at very low speeds near to V=0, the bearings can be used at pressures higher than those given in the table above.

HA DAISLIDE HA Bushing

(Bushing Inner Diameter:) 8 to 45 mm

Designation of Part Number

HA 061008

Please specify by part number.

(Unit: mm)

		Recomm	nended Dimen	sion Mat	ing Part	Bushing	Dimensions	S																		
Bushi I.D.		Houshing		naft Dia.		I.D.	0.0						Part N	lumber	& Bush	ing Len	gth Tole	erance	-0.1 -0.3				Face C	Chamfer	Chamfer	Bushing I.D.
		I.D.	General Purpose General (Heavy Load)	eral Purpose ight Load)	High Accuracy Purpose	I.D.	O.D.	8	10	12	15	16	19	20	25	30	35	40	50	60	70	80	race C	on O.D.		
6	φ	610H7 + 0.015	φ 6d8 ^{-0.030} _{-0.048} φ	6e7 -0.020 -0.032	φ 6f7 ^{-0.010} -0.022	$\phi6^{+0.022}_{+0.010}$	φ10 ^{+0.015} _{+0.006}	061008	061010	061012	061015												C0.3	1.5x15°	1x10°	6
8	φ	12H7 +0.018	φ 8d8 -0.040 φ	8e7 -0.025 -0.040	φ 8f7 ^{-0.013} _{-0.028}	φ8 ^{+0.028} _{+0.013}	φ12 ^{+0.018} _{+0.007}	081208	081210	081212	081215												C0.5	0.75x15°	1x10°	8
10	φ	614H7 + 0.018	φ10d8 ^{-0.040} _{-0.062} φ1	0e7 -0.025 -0.040	φ10f7 ^{-0.013} _{-0.028}	φ 10 ^{+0.028} _{+0.013}	φ14 ^{+0.018} _{+0.007}	101408	101410	101412	101415			101420									C0.5	0.75x15°	1x10°	10
12	φ	518H7 + 0.018	φ12d8 ^{-0.050} _{-0.077} φ1	2e7 -0.032 -0.050	φ12f7 ^{-0.016} _{-0.034}	φ12 ^{+0.034} _{+0.016}	φ18 ^{+0.018} _{+0.007}	121808	121810	121812	121815	121816	121819	121820	121825	121830							C0.5	2x15°	2x10°	12
13			φ13d8 -0.050 φ1							131912				131920	131925	131930							C0.5	2x15°	2x10°	13
14	φ	Ø20H7 ^{+0.021}	φ14d8 ^{-0.050} φ1	4e7 -0.032 -0.050	φ14f7 -0.016 -0.034	φ14 ^{+0.034} _{+0.016}	φ20 ^{+0.021} _{+0.008}		142010	142012	142015			142020	142025	142030							C0.5	2x15°	2x10°	14
15	φ	b21H7 + 0.021	φ15d8 ^{-0.050} _{-0.077} φ1	5e7 -0.032 -0.050	φ15f7 ^{-0.016} _{-0.034}	φ 15 ^{+0.034} _{+0.016}	φ21 ^{+0.021} _{+0.008}		152110	152112	152515	152116		152120	152125	152130	152135	152140					C0.5	2x15°	2x10°	15
16	φ	b22H7 + 0.021	φ16d8 -0.050 φ1	6e7 -0.032 -0.050	φ16f7 ^{-0.016} _{-0.034}	φ 16 ^{+0.034} _{+0.016}	φ22 ^{+0.021} _{+0.008}		162210	162212	162215	162216	162219	162220	162225	162230	162235	162240					C0.5	2x15°	2x10°	16
17	φ	b23H7 + 0.021	φ17d8 ^{-0.050} _{-0.077} φ1	7e7 -0.032 -0.050	φ17f7 -0.016 -0.034	φ17 ^{+0.034} _{+0.016}	φ23 ^{+0.021} _{+0.008}				172315												C0.5	2x15°	2x10°	17
18	φ	b24H7 + 0.021	φ18d8 ^{-0.050} _{-0.077} φ1	8e7 -0.032 -0.050	φ18f7 ^{-0.016} _{-0.034}	φ18 ^{+0.034} _{+0.016}	φ24 ^{+0.021} _{+0.008}		182410	182412	182415	182416		182420	182425	182430	182435	182440					C0.5	2x15°	2x10°	18
19	φ	b26H7 + 0.021	φ19d8 ^{-0.065} _{-0.098} φ1	9e7 -0.040 -0.061	φ19f7 ^{-0.020} _{-0.041}	φ19 ^{+0.041} _{+0.020}	φ26 ^{+0.021} _{+0.008}				192615			192620									C0.5	2x15°	2x10°	19
20			φ20d8 -0.065 φ2						202810	202812	202815	202816	202819	202820	202825	202830	202835	202840	202850				C0.5	2x15°	2x10°	20
20	_		φ20d8 -0.065 φ2						203010	203012	203015	203016		203020	203025	203030	203035	203040	203050				C0.5	2x15°	2x10°	20
22	φ	32H7 ^{+0.025}	φ22d8 -0.065 φ2	22e7 -0.040 -0.061	φ22f7 ^{-0.020} _{-0.041}	φ22 ^{+0.041} _{+0.020}	φ32 ^{+0.025} _{+0.009}			223212	223215			223220	223225								C0.5	2x15°	2.5x10°	22
25			φ25d8 -0.065 φ2							253312	253315	253316		253320	253325	253330	253335	253340	253350	253360			C0.5	2.5x15°	2.5x10°	25
25	φ	535H7 + 0.025	φ25d8 -0.065 φ2	25e7 -0.040 -0.061	φ25f7 ^{-0.020} _{-0.041}	φ25 ^{+0.041} _{+0.020}	φ35 ^{+0.025} _{+0.009}			253512	253515	253516		253520	253525	253530	253535	253540	253550	253560			C0.5	2.5x15°	2.5x10°	25
28	φ	538H7 + 0.025	φ28d8 -0.065 φ2	28e7 -0.040 -0.061	φ28f7 ^{-0.020} _{-0.041}	φ28 ^{+0.041} _{+0.020}	φ38 ^{+0.025} _{+0.009}							283820	283825	283830		283840					C0.5	2.5x15°	2.5x10°	28
30	φ	38H7 + 0.025	φ30d8 -0.065 φ3	30e7 -0.040 -0.061	φ30f7 -0.020 -0.041	φ30 ^{+0.041} _{+0.020}	φ38 ^{+0.025} _{+0.009}			303812	303815			303820	303825	303830	303835	303840	303850	303860			C0.5	3x15°	3x10°	30
30	-		φ30d8 -0.065 φ3							304012	304015			304020	304025	304030	304035	304040	304050	304060			C0.5	3x15°	3x10°	30
31.5	5 φ	40H7 + 0.025	φ31.5d8 -0.080 φ3	1.5e7 -0.040 -0.061	φ31.5f7 ^{-0.020} _{-0.041}	φ31.5 ^{+0.050} _{+0.025}	φ40 ^{+0.025} _{+0.009}									314030		314040					C0.5	3x15°	3x10°	31.5
			φ32d8 -0.119 φ3											324220		324230		324240					C0.5	3x15°	3x10°	32
			φ35d8 -0.080 φ3											354420	354425	354430	354435	354440	354450	354460			C0.5	3x15°	3x10°	35
35	φ	645H7 + 0.025	φ35d8 ^{-0.080} φ3	35e7 -0.050 -0.075	φ35f7 ^{-0.025} _{-0.050}	φ35 ^{+0.050} _{+0.025}	φ45 ^{+0.025} _{+0.009}							354520	354525	354530	354535	354540	354550	354560			C0.5	3x15°	3x10°	35
38	φ	648H7 + 0.025	φ38d8 -0.080 φ3	38e7 -0.050 -0.075	φ38f7 ^{-0.025} _{-0.050}	φ38 ^{+0.050} _{+0.025}	φ48 ^{+0.025} _{+0.009}											384840					C0.5	3x15°	3x10°	38
			φ40d8 -0.119 φ4								405015			405020	405025	405030	405035	405040	405050	405060	405070	405080	C0.5	3x15°	3x10°	40
			φ40d8 -0.080 φ4								405515					405530	405535	405540	405550	405560			C0.5	3x15°	3x10°	40

* DAISLIDE HA can be used with TA thrust washer in the thrust load environment.

HA

DAISLIDE HA Bushing

(Bushing Inner Diameter:) 45 to 160 mm

Designation of Part Number

ELV

HA 455530

Please specify by part number.

(Unit: mm)

	Recomn	nended Din	nension Ma	ting Part	Bushing	Dimensions	S																			
Bushing I.D.	Houshing	S	haft Dia.		0.0	Wall						Pa	art Nu	mber	& Bush	ing Len	gth Tole	erance :	- 0.1 - 0.3				Face C	Chamfer	Chamfer	Bushing I.D.
1.5.		General Purpose (Heavy Load)	General Purpose (Light Load)	High Accuracy Purpose	O.D.	Thickness	20	25	30	35	40	5	50	60	70	80	90	100	120	130	140	150	Face C	on O.D.	on I.D.	1.0.
45	Φ55H7 ^{+0.030}	Φ45d8 -0.080 -0.119	Φ45e7 -0.050 -0.075	φ45f7 -0.025 -0.050	φ45 ^{+0.050} +0.025	φ55 ^{+0.030} +0.011			455530	455535	455540	455	5550	455560									C0.5	3.5 x 15°	3.5 x 10°	45
	Φ56H7 ^{+0.030}		Φ45e7 -0.050 -0.075	φ45f7 -0.025 -0.050	φ45 ^{+0.050} +0.025	φ56 ^{+0.030} _{+0.011}			455630	455635	455640	455	5650	455660									C0.5	3.5 x 15°	3.5 x 10°	45
	Φ60H7 ^{+0.030}		Φ45e7 -0.050 -0.075	φ45f7 -0.025 -0.050	φ45 ^{+0.050} +0.025	φ60 ^{+0.030} _{+0.011}			456030	456035	456040	456	6050	456060	456070	456080							C0.5	3.5 x 15°	3.5 x 10°	45
	Φ60H7 ^{+0.030}		φ50e7 -0.050 -0.075	φ50f7 -0.025 -0.050	φ50 ^{+0.050} +0.025	φ60 ^{+0.030} _{+0.011}	506020		506030	506035	506040	506	6050	506060	506070	506080							C0.5	4.0 x 15°	4.0 x 10°	50
	Φ62H7 ^{+0.030}		φ50e7 -0.050 -0.075	φ50f7 -0.025 -0.050	φ50 ^{+0.050} +0.025				506230	506235	506240	506	6250	506260	506270	506280							C0.5	4.0 x 15°	4.0 x 10°	50
	Φ65H7 ^{+0.030}		φ50e7 -0.050 -0.075	φ50f7 -0.025 -0.050	φ50 ^{+0.050} _{+0.025}	φ65 ^{+0.030} _{+0.011}			506530		506540	506	6550	506560	506570	506580		5065100					C0.5	4.0 x 15°	4.0 x 10°	50
	Φ70H7 ^{+0.030}		φ55e7 -0.060 -0.090	φ55f7 -0.030 -0.060	φ55 ^{+0.060} +0.030				557030	557035	557040	557	7050	557060	557070								C0.5	4.0 x 15°	4.0 x 10°	55
	Φ74H7 ^{+0.030}		φ60e7 -0.060 -0.090	φ60f7 -0.030 -0.060	φ60 ^{+0.060} _{+0.030}				607430	607435	607440	607	7450	607460	607470	607480							C0.5	4.0 x 15°	4.0 x 10°	60
	Φ75H7 ^{+0.030}		φ60e7 -0.060 -0.090	φ60f7 -0.030 -0.060	φ60 ^{+0.060} _{+0.030}				607530	607535		607	7550	607560	607570	607580		6075100					C0.5	4.0 x 15°	4.0 x 10°	60
	Φ75H7 ^{+0.030}		φ63e7 -0.060 -0.090	φ63f7 -0.030 -0.060	φ63 ^{+0.060} _{+0.030}									637560	637570	637580							C0.5	4.0 x 15°	4.0 x 10°	63
65	Φ80H7 ^{+0.030}		φ65e7 -0.060 -0.090	φ65f7 -0.030 -0.060	ϕ 65 $^{+0.060}_{+0.030}$	φ80 ^{+0.030} +0.011					658040	658	8050	658060	658070	658080							C0.5	4.0 x 15°	4.0 x 10°	65
70	Φ85H7 ^{+0.035}		φ70e7 -0.060 -0.090	φ70f7 -0.030 -0.060	φ70 ^{+0.060} _{+0.030}	φ85 ^{+0.035} +0.013			708530	708535		708	8550	708560	708570	708580		7085100					C0.5	4.0 x 15°	4.0 x 10°	70
	Φ90H7 ^{+0.035}		φ70e7 -0.060 -0.090	φ70f7 -0.030 -0.060	φ70 ^{+0.060} _{+0.030}							709	9050	709060	709070	709080							C0.5	4.0 x 15°	4.0 x 10°	70
	Φ90H7 ^{+0.035}		Φ75e7 -0.060 -0.090	Φ75f7 -0.030 -0.060	φ75 ^{+0.060} _{+0.030}							759	9050	759060	759070	759080		7590100					C0.5	4.0 x 15°	4.0 x 10°	75
	Φ95H7 ^{+0.035}		Φ75e7 -0.060 -0.090	φ75f7 -0.030 -0.060	φ75 ^{+0.060} _{+0.030}	φ95 ^{+0.035} +0.013								759560	759570	759580		7595100					C0.5	4.0 x 15°	4.0 x 10°	75
	Φ96H7 ^{+0.035}		φ80e7 -0.060 -0.090	Φ80f7 -0.030 -0.060	Φ80 ^{+0.060} _{+0.030}	Φ96 ^{+0.035} _{+0.013}					809640	809	9650	809660	809670	809680		8096100	8096120				C0.5	4.0 x 15°	4.0 x 10°	80
	φ100H7 ^{+0.035}		φ80e7 -0.060 -0.090	φ80f7 -0.030 -0.060	Φ80 ^{+0.060} _{+0.030}	φ100 ^{+0.035} _{+0.013}					8010040	8010	0050 8	010060	8010070	8010080		80100100	80100120		80100140		C0.5	4.0 x 15°	4.0 x 10°	80
	Φ100H7 ^{+0.035}		Φ85e7 -0.072 -0.107	Φ85f7 -0.036 -0.071	Φ85 ^{+0.071} +0.036	φ100 ^{+0.035} _{+0.013}							8	510060		8510080							C1.0	5.0 x 15°	5.0 x 10°	85
90	Φ110H7 ^{+0.035}	Φ90d8 -0.120 -0.174	φ90e7 -0.072 -0.107	φ90f7 -0.036 -0.071	φ90 ^{+0.071} +0.036	φ110 ^{+0.035} +0.013						9011	1050 9	011060		9011080	9011090	90110100	90110120				C1.0	5.0 x 15°	5.0 x 10°	90
100	Φ120H7 ^{+0.035} ₀	φ100d8 -0.120 -0.174	φ100e7 -0.072 -0.107	φ100f7 -0.036 -0.071	ϕ 100 $^{+0.071}_{+0.036}$	φ120 ^{+0.035} _{+0.013}						1001	12050 1	0012060	10012070	10012080	10012090	100120100	100120120		100120140		C1.0	5.0 x 15°	5.0 x 10°	100
		φ110d8 -0.120 -0.174			φ110 ^{+0.071} +0.036							1101	13050		11013070	11013080		110130100	110130120				C1.0	5.0 x 15°	6.0 x 10°	110
				φ120f7 -0.036 -0.071											12014070	12014080	12014090	120140100	120140120		120140140		C1.0	5.0 x 15°	6.0 x 10°	120
125	Φ145H7 ^{+0.040}	Φ125d8 -0.145 -0.208	Φ125e7 -0.085 -0.125	φ125f7 -0.043 -0.083	φ125 ^{+0.083} _{+0.043}	φ145 ^{+0.040} _{+0.015}												125145100	125145120				C1.0	5.0 x 15°	6.0 x 10°	125
				φ130f7 -0.043 -0.083												13015080		130150100		130150130			C1.0	5.0 x 15°	6.0 x 10°	130
				φ140f7 -0.043 -0.083														140160100			140160140		C1.0	5.0 x 15°	6.0 x 10°	140
150	Φ170H7 ^{+0.040}	φ150d8 -0.145 -0.208	φ150e7 -0.085 -0.125	φ150f7 -0.043 -0.083	φ150 ^{+0.083} _{+0.043}	Φ170 ^{+0.040} _{+0.015}										15017080		150170100				150170150	C1.0	5.0 x 15°	6.0 x 10°	150
160	Φ180H7 ^{+0.040}	φ160d8 -0.145 -0.208	φ160e7 -0.085 -0.125	φ160f7 -0.043 -0.083	Φ160 ^{+0.083} _{+0.043}	φ180 ^{+0.040} _{+0.015}										16018080		160180100				160180150	C1.0	5.0 x 15°	6.0 x 10°	160

SAF DAISLIDE SAF Flanged Bushing (Bushing Inner Diameter:) 6 to 120 mm

Designation of Part Number

d8: For General Use (High Load) e7: For General Use (Light Load) f7: For High-precision Use

Flanged Bushing(SAF)

SAF 0610

Please specify by part number.

(Unit: mm)

		nded Dimensi	on Mating F	Part	Bushing	Dimensio	ns																					
Bushing I.D.	Houshing		Shaft Dia		Flange	Flange	0.0	Wall			F	Part No	umber	& Bush	ning Le	ngth T	oleran	ce - 0.1 ce - 0.3								Chamfer C	Chamfer	Bushing I.D.
	I.D.	General Purpose (Heavy Load)	General Purpose (Light Load)	High Accuracy Purpose	O.D.	Thickness	O.D.	Thickness	10	12		15	17	18	20	23	25	30	35	40	50	60	67	80	100	on O.D.	on I.D.	
6	Φ10H7 ^{+0.015}	Φ6d8 -0.030 -0.048	Φ6e7 -0.020 -0.032	Φ6f7 ^{-0.010} -0.022	Φ16 ±0.25	2 0 -0.1	Φ6 ^{+0.032} _{+0.020}	Φ10 ^{+0.028} _{+0.019}	0610	0612		0615														1.5 x 15° 1	1.0 x 10°	6
8	Φ12H7 ^{+0.018}	Φ8d8 -0.040 -0.062	Φ8e7 -0.025 -0.040	Φ8f7 ^{-0.013} _{-0.028}	Φ20 ±0.25	2 -0.1	Φ8 ^{+0.045} +0.030	Φ12 ^{+0.038} _{+0.023}	0810	0812		0815														0.75 x 15° 1	1.0 x 10°	8
10	Φ14H7 ^{+0.018}	Φ10d8 ^{-0.040} _{-0.062}	Φ10e7 -0.025 -0.040	Φ10f7 ^{-0.013} _{-0.028}	Φ22 ±0.25	2 0 -0.1	Φ10 ^{+0.045} +0.030	Φ14 ^{+0.038} _{+0.023}	1010	1012		1015	1017		1020											0.75 x 15° 1	1.0 x 10°	10
12	Φ18H7 ^{+0.018} ₀	Φ12d8 -0.050 -0.077	Φ12e7 ^{-0.032} _{-0.050}	Φ12f7 ^{-0.016} _{-0.034}	Φ25 ±0.25	3 -0.1	Φ12 ^{+0.050} _{+0.032}	Φ18 ^{+0.038} _{+0.023}	1210	1212		1215			1220		1225	1230								2.0 x 15°	2.0 x 10°	12
13	Φ19H7 ^{+0.021}	Φ13d8 ^{-0.050} _{-0.077}	Φ13e7 ^{-0.032} _{-0.050}	Φ13f7 ^{-0.016} _{-0.034}	ϕ 26 ±0.25	3 -0.1	ϕ 13 $^{+0.060}_{+0.042}$	Φ19 ^{+0.045} _{+0.028}	1310	1312		1315			1320		1325	1330								2.0 x 15°	2.0 x 10°	13
14		Φ14d8 -0.050 -0.077		Φ14f7 -0.016 -0.034	ϕ 27 ±0.25	3 0 -0.1	ϕ 14 $^{+0.060}_{+0.042}$	Φ20 ^{+0.045} _{+0.028}				1415			1420		1425									2.0 x 15°	2.0 x 10°	14
15	Φ21H7 ^{+0.021}	Φ15d8 ^{-0.050} _{-0.077}	Φ15e7 -0.032 -0.050	Φ15f7 -0.016 -0.034	ϕ 28 ±0.25	3 0 -0.1	ϕ 15 $^{+0.060}_{+0.042}$	Φ21 ^{+0.045} _{+0.028}	1510	1512		1515			1520		1525	1530								2.0 x 15°	2.0 x 10°	15
16	Φ22H7 ^{+0.021}	Φ16d8 -0.050 -0.077	Φ16e7 ^{-0.032} _{-0.050}	Φ16f7 ^{-0.016} _{-0.034}	ϕ 29 ±0.25	3 -0.1	ϕ 16 $^{+0.060}_{+0.042}$	Φ22 ^{+0.045} _{+0.028}		1612		1615		1618	1620	1623	1625	1630	1635	1640						2.0 x 15°	2.0 x 10°	16
18	Φ24H7 +0.021	Φ18d8 ^{-0.050} _{-0.077}	Φ18e7 -0.032 -0.050	Φ18f7 ^{-0.016} _{-0.034}	ϕ 32 ±0.25	3 -0.1	ϕ 18 $^{+0.060}_{+0.042}$	Φ24 ^{+0.045} _{+0.028}				1815			1820		1825	1830	1835	1840						2.0 x 15°	2.0 x 10°	18
20		Φ20d8 -0.065 -0.098		Φ20f7 -0.020 -0.041	Φ40 ±0.25	5 -0.1	ϕ 20 $^{+0.071}_{+0.050}$	Φ30 ^{+0.045} _{+0.028}			1	2015			2020		2025	2030	2035	2040						2.0 x 15°	2.0 x 10°	20
25		Φ25d8 -0.065 -0.098		Φ25f7 ^{-0.020} -0.041	ϕ 45 ±0.25	5 -0.1	ϕ 25 $^{+0.081}_{+0.060}$	Φ35 ^{+0.055} _{+0.034}				2515			2520		2525	2530	2535	2540	2550					2.5 x 15°	2.5 x 10°	25
30	Φ40H7 +0.025	Φ30d8 -0.065 -0.098	Φ30e7 -0.040 -0.061	Φ30f7 -0.020 -0.041	ϕ 50 ±0.25	5 -0.1	Φ30 ^{+0.081} _{+0.060}	Φ40 ^{+0.055} _{+0.034}							3020		3025	3030	3035	3040	3050					3.0 x 15°	3.0 x 10°	30
30		Φ30d8 -0.065 -0.098		Φ30f7 ^{-0.020} -0.041	ϕ 60 ±0.25	5 ⁰ _{-0.1}		Φ40 ^{+0.055} _{+0.034}											*3035F							3.0 x 15°	3.0 x 10°	30
31.5	Φ40H7 +0.025	Φ31.5d8 -0.080 -0.119	Φ31.5e7 -0.050 -0.075	Φ31.5f7 -0.025 -0.050	ϕ 50 ±0.25	5 -0.1		Φ40 ^{+0.055} _{+0.034}							3120			3130	3135	3140						3.0 x 15°	3.0 x 10°	31.5
35		Φ35d8 -0.080 -0.119		Φ35f7 ^{-0.025} _{-0.050}	Φ60 ±0.25	0.1		Φ45 ^{+0.055} _{+0.034}							3520		3525	3530	3535	3540	3550					3.0 x 15°	3.0 x 10°	35
40		Φ40d8 -0.080 -0.119		Φ40f7 -0.025 -0.050	ϕ 65 ±0.25	5 -0.1		Φ50 ^{+0.055} _{+0.034}							4020		4025	4030	4035	4040	4050					3.0 x 15°	3.0 x 10°	40
45		Φ45d8 -0.080 -0.119		Φ45f7 -0.025 -0.050	Φ70 ±0.25	5 _{-0.1}		Φ55 ^{+0.066} _{+0.041}										4530	4535	4540	4550	4560				3.5 x 15°	3.5 x 10°	45
50		Φ50d8 -0.080 -0.119		Φ50f7 -0.025 -0.050	$\phi 75 \pm 0.25$	0.1		Φ60 ^{+0.066} _{+0.041}										5030	5035	5040	5050	5060				4.0 x 15°	4.0 x 10°	50
55		Φ55d8 -0.100 -0.146		Φ55f7 -0.030 -0.060	$\phi 80 \pm 0.25$	0.1		Φ65 ^{+0.066} _{+0.041}												5540		5560				4.0 x 15°	4.0 x 10°	55
60		Φ60d8 -0.100 -0.146		Φ60f7 -0.030 -0.060	φ90 ±0.25	0.1		Φ75 ^{+0.068} _{+0.043}												6040	6050	6060		6080		4.0 x 15°	4.0 x 10°	60
63		Φ63d8 -0.100 -0.146			Φ85 ±0.25	0.1		Φ75 ^{+0.068} _{+0.043}															6367			4.0 x 15°		
65		Φ65d8 -0.100 -0.146						Φ80 ^{+0.068} _{+0.043}														6560				4.0 x 15°		
70		Φ70d8 -0.100 -0.146																			7050			7080		4.0 x 15°		
75		Φ75d8 -0.100 -0.146						Φ90 ^{+0.080} _{+0.051}														7560				4.0 x 15°		
80		Φ80d8 -0.100 -0.146				10 -0.1	Φ80 ^{+0.111} +0.081	Φ100 ^{+0.080} _{+0.051}														8060		8080	80100	4.0 x 15°		
		Φ90d8 -0.120 -0.174						Φ110 ^{+0.083} _{+0.054}														9060		9080		5.0 x 15°		
100	φ120H7 ^{+0.035}	φ100d8 -0.120	Φ100e7 -0.072 -0.107	Φ100f7 -0.036	Φ150 ±0.40	10 -0.1		Φ120 ^{+0.083} _{+0.054}																		5.0 x 15°		
120	Φ140H7 +0.040	Φ120d8 -0.120 -0.174	Φ120e7 -0.072 -0.107	Φ120f7 -0.036 -0.071	Φ170 ±0.40	10 -0.1	Φ120 ^{+0.132} _{+0.097}	Φ140 ^{+0.096} _{+0.063}																12080	120100	5.0 x 15°	5.0 x 10°	120

* 3035 F has lube also in the Flange part.

Designation of Part Number

SAFG 0610

- Please specify by part number.

•Suitable for applications with rotating, oscillating, or reciprocating motion.

Capable of handling thrust loads simultaneously with just one bushing.

(Unit: mm)

Bushing	Recommend	ed Dimension	Mating Part		Bushing D	Dimensions											Bushing
inner	Houshing		Shaft Dia		Outer flange		Inner	Outer	Part Numb	er and Busl	ning Length	Tolerance :	-0.1 -0.3				inner
diameter	I.D.	General Purpose (Heavy Load)	General Purpose (Light Load)	High Accuracy Purpose	(F)	Thickness (t)	diameter (d)	diameter (D)	10	12	14	15	20	25	35	45	diameter
6	Φ10H7 ^{+0.015}	Φ6d8 -0.030 -0.048	Φ6e7 -0.020 -0.032	Φ6f7 -0.010 -0.022	φ20 ±0.25	3 -0.03	Φ6 ^{+0.032} +0.020	Φ10 ^{+0.028} _{+0.019}	0610	0612							6
8	φ12H7 ^{+0.018}	Φ8d8 -0.040 -0.062	Φ8e7 -0.025 -0.040	Φ8f7 -0.013 -0.028	Φ25 ±0.25	3 -0.03	Φ8 ^{+0.040} +0.025	Φ12 ^{+0.034} _{+0.023}		0812		0815					8
10	φ14H7 ^{+0.018}	Φ10d8 -0.040 -0.062	Φ10e7 -0.025 -0.040	Φ10f7 -0.013 -0.028	φ25 ±0.25	3 -0.03	Φ10 ^{+0.040} _{+0.025}	Φ14 ^{+0.034} _{+0.023}		1012		1015	1020				10
12	Φ18H7 ^{+0.018}	Φ12d8 -0.050 -0.077	Φ12e7 -0.032 -0.050	Φ12f7 -0.016 -0.034	φ30 ±0.25	3 -0.03	Φ12 ^{+0.050} _{+0.032}	Φ18 ^{+0.034} _{+0.023}		1212		1215	1220	1225			12
13	φ19H7 ^{+0.021} ₀	Φ13d8 ^{-0.050} _{-0.077}	Φ13e7 -0.032 -0.050	Φ13f7 -0.016 -0.034	φ30 ±0.25	3 -0.03	Φ13 ^{+0.050} _{+0.032}	Φ19 ^{+0.041} _{+0.028}		1312		1315	1320	1325			13
15	Φ21H7 ^{+0.021}	Φ15d8 ^{-0.050} _{-0.077}	Φ15e7 -0.032 -0.050	Φ15f7 -0.016 -0.034	Φ35 ±0.25	3 -0.03	Φ15 ^{+0.050} _{+0.032}	Φ21 ^{+0.041} +0.028		1512		1515	1520	1525			15
16	Φ22H7 ^{+0.021}	Φ16d8 -0.050 -0.077	Φ16e7 -0.032 -0.050	Φ16f7 -0.016 -0.034	φ35 ±0.25	3 -0.03	Φ16 ^{+0.050} _{+0.032}	$\phi_{22}^{+0.041}_{+0.028}$		1612		1615	1620	1625			16
18	Φ24H7 ^{+0.021}	Φ18d8 -0.050 -0.077	Φ18e7 -0.032 -0.050	Φ18f7 -0.016 -0.034	Φ40 ±0.25	3 -0.03	Φ18 ^{+0.050} _{+0.032}	Φ24 ^{+0.041} +0.028			1814		1820	1825			18
20	Φ28H7 ^{+0.021}	Φ20d8 -0.065 -0.098	Φ20e7 -0.040 -0.061	Φ20f7 -0.020 -0.041	Φ45 ±0.25	5 -0.03	Φ20 ^{+0.061} _{+0.040}	Φ28 ^{+0.041} _{+0.028}			2014		2020	2025			20
25	Φ33H7 ^{+0.025}	Φ25d8 -0.065 -0.098	Φ25e7 -0.040 -0.061	Φ25f7 -0.020 -0.041	φ50 ±0.25	5 -0.03	Φ25 ^{+0.061} _{+0.040}	Φ33 ^{+0.050} _{+0.034}			2514		2520	2525			25
30	Φ38H7 ^{+0.025}	Φ30d8 ^{-0.065} -0.098	Φ30e7 -0.040 -0.061	Φ30f7 -0.020 -0.041	φ55 ±0.25	5 -0.03	Φ30 ^{+0.061} _{+0.040}	Φ38 ^{+0.050} _{+0.034}					3020	3025	3035		30
35	Φ44H7 ^{+0.025}	Φ35d8 ^{-0.080} _{-0.119}	Φ35e7 -0.050 -0.075	Φ35f7 -0.025 -0.050	φ65 ±0.25	5 0 -0.03	Φ35 ^{+0.075} _{+0.050}	Φ44 ^{+0.050} +0.034					3520	3525	3535		35
40	Φ50H7 ^{+0.025}	Φ40d8 -0.080 -0.119	Φ40e7 -0.050 -0.075	Φ40f7 -0.025 -0.050	φ70 ±0.25	7 0 -0.03	Φ40 ^{+0.075} _{+0.050}	φ50 ^{+0.050} _{+0.034}						4025	4035	4045	40
50	Φ62H7 ^{+0.030}	Φ50d8 -0.080 -0.119	Φ50e7 -0.050 -0.075	Φ50f7 -0.025 -0.050	φ90 ±0.25	8 -0.03	φ50 ^{+0.075} _{+0.050}	Φ62 ^{+0.060} _{+0.041}							5035	5045	50

BA DAISLIDE BA Bushing

Designation of Part Number

BA 121816

Please specify by Part No.
This product is produced on order only.

(Unit: mm)

Recommended mating dimension	S	Bushing I	Dimensions	3														Puching
	eter	Inner	Outer					Part Numbe	r & Bushi	ing Length	Toleranc	e ^{- 0.1} e _{- 0.3}					hamfer Inner	Bushing inner
	ose High precision	(d)	(D)	15	16	20	25	30	35	40	50	60	70	80	100	Chamfer	Press fit chamfer	diameter
		Φ12 ^{+0.050} _{+0.032}	Φ18 ^{+0.038} _{+0.023}		121816	121820	121825	121830										12
Φ21H7 +0.021 Φ15d8 -0.050 Φ15e7 -0.0	³² φ15f7 -0.016 -0.034	Φ15 ^{+0.060} _{+0.042}	Φ21 ^{+0.045} +0.028	152115		152120	152125									C0.5	2.0 x 15° 2.0 x 10°	15
Φ24H7 +0.021 Φ18d8 -0.050 Φ18e7 -0.0	³² φ18f7 -0.016 -0.034	Φ18 ^{+0.060} _{+0.042}	Φ24 ^{+0.045} +0.028	182415		182420	182425	182430								C0.5	2.0 x 15° 2.0 x 10°	18
φ30H7 +0.021 φ20d8 -0.065 φ20e7 -0.0	φ20f7 -0.020 -0.041	Φ20 ^{+0.071} +0.050	Φ30 ^{+0.045} +0.028		203016	203020	203025	203030	203035	203040						C0.5	2.0 x 15° 2.0 x 10°	20
Φ33H7 +0.025 Φ25d8 -0.065 Φ25e7 -0.0	⁰⁴⁰ ₀₆₁ Φ25f7 -0.020 -0.041	Φ25 ^{+0.081} _{+0.060}	Φ33 ^{+0.055} +0.034		253316	253320	253325	253330	253335	253340	253350					C0.5	2.5 x 15° 2.5 x 10°	25
Φ35H7 +0.025 Φ25d8 -0.065 Φ25e7 -0.0	⁰⁴⁰ ₀₆₁ Φ25f7 -0.020 -0.041	Φ25 ^{+0.081} _{+0.060}	Φ35 ^{+0.055} _{+0.034}		253516	253520	253525	253530	253535	253540	253550					C0.5	2.5 x 15° 2.5 x 10°	25
Φ38H7 +0.025 Φ30d8 -0.065 Φ30e7 -0.0	φ30f7 -0.020 -0.041	Φ30 ^{+0.081} +0.060	Φ38 ^{+0.055} _{+0.034}			303820	303825	303830	303835	303840	303850	303860				C0.5	3.0 x 15° 3.0 x 10°	30
φ40H7 +0.025 φ30d8 -0.065 φ30e7 -0.0	φ30f7 -0.020 -0.041	Φ30 ^{+0.081} +0.060	Φ40 ^{+0.055} _{+0.034}			304020	304025	304030	304035	304040	304050	304060				C0.5	3.0 x 15° 3.0 x 10°	30
Φ40H7 +0.025 Φ31.5d8 -0.080 Φ31.5e7 -0.0	φ31.5f7 -0.025 -0.050	Φ31.5 ^{+0.085} _{+0.060}	Φ40 ^{+0.055} _{+0.034}					314030		314040						C0.5	3.0 x 15° 3.0 x 10°	31.5
Φ44H7 +0.025 Φ35d8 -0.080 Φ35e7 -0.0	⁰⁵⁰ φ35f7 -0.025 -0.050	Φ35 ^{+0.085} _{+0.060}	Φ44 ^{+0.055} +0.034					354430	354435	354440	354450	354460				C0.5	3.0 x 15° 3.0 x 10°	35
Φ45H7 +0.025 Φ35d8 -0.080 Φ35e7 -0.0	⁰⁵⁰ ₇₅ Φ35f7 -0.025 -0.050	Φ35 ^{+0.085} _{+0.060}	Φ45 ^{+0.055} _{+0.034}			354520	354525	354530	354535	354540	354550	354560				C0.5	3.0 x 15° 3.0 x 10°	35
Φ50H7 +0.025 Φ40d8 -0.080 Φ40e7 -0.0	⁰⁵⁰ φ40f7 -0.025 -0.050	Φ40 ^{+0.091} _{+0.066}	Φ50 ^{+0.055} +0.034			405020	405025	405030	405035	405040	405050	405060	405070			C0.5	3.0 x 15° 3.0 x 10°	40
Φ55H7 +0.030 Φ40d8 -0.080 Φ40e7 -0.0	⁰⁵⁰ ₇₅ Φ40f7 -0.025 -0.050	Φ40 ^{+0.091} _{+0.066}	Φ55 ^{+0.066} _{+0.041}					405530	405535	405540	405550	405560				C0.5	3.0 x 15° 3.0 x 10°	40
Φ55H7 +0.030 Φ45d8 -0.080 Φ45e7 -0.0	⁰⁵⁰ ₇₅ Φ45f7 -0.025 -0.050	Φ45 ^{+0.091} _{+0.066}	Φ55 ^{+0.066} _{+0.041}					455530	455535	455540	455550	455560				C0.5	3.0 x 15° 3.0 x 10°	45
Φ60H7 +0.030 Φ45d8 -0.080 Φ45e7 -0.0	⁰⁵⁰ ₇₅ Φ45f7 -0.025 -0.050	Φ45 ^{+0.091} _{+0.066}	Φ60 ^{+0.066} _{+0.041}					456030	456035	456040	456050	456060	456070			C0.5	3.0 x 15° 3.0 x 10°	45
Φ60H7 +0.030 Φ50d8 -0.080 Φ50e7 -0.0	⁰⁵⁰ ₇₅ φ50f7 -0.025 -0.050	Φ50 ^{+0.091} +0.066	Φ60 ^{+0.066} _{+0.041}					506030	506035	506040	506050	506060				C0.5	4.0 x 15° 4.0 x 10°	50
Φ65H7 +0.030 Φ50d8 -0.080 Φ50e7 -0.0	⁰⁵⁰ ₇₅ φ50f7 -0.025 -0.050	Φ50 ^{+0.091} +0.066	Φ65 ^{+0.066} _{+0.041}					506530		506540	506550	506560	506570	506580	5065100	C0.5	4.0 x 15° 4.0 x 10°	50
Φ70H7 +0.030 Φ55d8 -0.100 Φ55e7 -0.0	¹⁶⁰ ₉₀ Φ55f7 -0.030 -0.060	Φ55 ^{+0.100} _{+0.070}	Φ70 ^{+0.068} _{+0.043}							557040	557050	557060	557070			C0.5	4.0 x 15° 4.0 x 10°	55
Φ75H7 +0.030 Φ60d8 -0.100 Φ60e7 -0.0	¹⁶⁰ ₉₀ φ60f7 -0.030 -0.060	Φ60 ^{+0.100} _{+0.070}	Φ75 ^{+0.068} _{+0.043}					607530	607535	607540	607550	607560	607570	607580	6075100	C0.5	4.0 x 15° 4.0 x 10°	60
Φ80H7 +0.030 Φ65d8 -0.100 Φ65e7 -0.0	φ65f7 -0.030 -0.060	Φ65 ^{+0.100} _{+0.070}	Φ80 ^{+0.068} _{+0.043}								658050	658060	658070	658080		C0.5	4.0 x 15° 4.0 x 10°	65
		Φ70 ^{+0.111} _{+0.081}	Φ85 ^{+0.080} _{+0.051}						708535	708540	708550	708560	708570	708580	7085100	C0.5	4.0 x 15° 4.0 x 10°	70
Φ90H7 +0.035 Φ75d8 -0.100 Φ75e7 -0.0	¹⁶⁰ ₉₀ Φ75f7 -0.030 -0.060	Φ75 ^{+0.111} _{+0.081}	Φ90 ^{+0.080} _{+0.051}									759060	759070	759080	7590100	C0.5	4.0 x 15° 4.0 x 10°	75
Φ100H7 +0.035 Φ80d8 -0.100 Φ80e7 -0.0	¹⁶⁰ ₉₀ Φ80f7 -0.030 -0.060	Φ80 ^{+0.111} +0.081	Φ100 ^{+0.080} _{+0.051}							8010040	8010050	8010060	8010070	8010080	80100100	C0.5	4.0 x 15° 4.0 x 10°	80
		Φ90 ^{+0.117} _{+0.082}	Φ110 ^{+0.083} _{+0.054}									9011060		9011080	90110100	C1	5.0 x 15° 5.0 x 10°	90
												10012060	10012070	10012080	100120100	C1	5.0 x 15° 5.0 x 10°	100
	Housing inner diameter General Purpose (high bearing load) (light bearin	Housing inner diameter General Purpose (high bearing load) General Purpose (high bearing load) High precision	Housing Inner diameter General Purpose General Purpose High precision Call Might bearing load High precision Purpose High bearing load High precision Purpose High bearing load High precision Purpose Purpose High precision Purpose Purpose High precision Purpose Purpose Purpose High precision Purpose Pu	Housing Inner diameter General Purpose General Purpose High precision General Purpose General Purpose General Purpose High precision General Purpose General Purpos	Housing Inner diameter General Purpose G	Housing Inner diameter General Purpose G	Housing Inner diameter General Purpose General Purpose High precision 11	Housing Inner diameter General Purpose General Purpose High precision Color Colo	Housing Axle diameter Comment Purpose General Purpose High precision Comment High precision High precision	Housing Axle diameter Content Purpose Co	Housing Inner claimeter General Purpose Service Purpose High precision Color Col	Housing Inner claimater Convent Purpose (General Purpose) Convent Purpose (General Purpose)	Housing Name Claimeter Control Claimeter C	Housing Inner Clameter Inner Clame	Housing Inner diameter Classed Purpose (Septed Purpose) (Septed Purp	Housing Conversion Purpose Conversion Purpose	Housing Internal classification Grant Franchic Classification Grant Gr	Part Part

DAISLIDE TA Thrust Washer (Bushing Inner Diameter:)

Designation of Part Number

Please specify by part number.

(d)	-	- C1
aa		
Rmax=6.3s		Rmax=25s COV
→		Thickness (t)

											(Unit: mm)
Dimensi	ons(mm)			Thickness (t) -0				chment h		Cha	mfer
Inner diameter (d)	Outer diameter (D)	3	5	7	8	10	P.C.D	Qty.	Countersunk bolt	а	b
10.2	30	TA1003					20	2	M3	1.5	0.3
12.2	40	TA1203					28	2	M3	2	0.4
12.2	40	TA1203N					No co	untersun	k hole	2	0.4
13.2	40	TA1303					28	2	M3	2	0.4
14.2	40	TA1403					28	2	M3	2	0.4
15.2	50	TA1503					35	2	M3	2	0.4
16.2	50	TA1603					35	2	M3	2	0.4
16.2	50	TA1603N					No co	untersun	k hole	2	0.4
18.2	50	TA1803					35	2	M3	2	0.4
20.2	50		TA2005				35	2	M5	2.5	0.4
25.2	55		TA2505				40	2	M5	2.5	0.4
30.2	60		TA3005				45	2	M5	2.5	0.4
35.2	70		TA3505				50	2	M5	2.5	0.4
40.2	80			TA4007			60	2	M6	3	0.5
45.2	90			TA4507			70	2	M6	3	0.5
50.3	100				TA5008		75	4	M6	4	0.7
55.3	110				TA5508		85	4	M6	4	0.7
60.3	120				TA6008		90	4	M8	5	0.9
65.3	125				TA6508		95	4	M8	5	0.9
70.3	130					TA7010	100	4	M8	5	0.9
75.3	140					TA7510	110	4	M8	5	0.9
80.3	150					TA8010	120	4	M8	5	0.9
90.5	170					TA9010	140	4	M10	5	0.9
100.5	190					TA10010	160	4	M10	5	0.9
120.5	200					TA12010	175	4	M10	5	0.9

 $[\]star Base\ metal\ is\ high-strength\ phosphor\ bronze.$

10

137

PA DAISLIDE PA plate

Designation of Part Number

- Please specify by part number.

(Unit: mm) Width Length Mounting-Hole Pitch Mounting-Hole Bolt Part Number W Bolt Type Quantity С а PA75150 150 -0.2 20 110 M8 Machine Screw 80 80 PA75200 200 -0.3 20 6 M8 Machine Screw PA75250 105 105 250 -0 20 M8 Machine Screw 6 75 _0.2 PA75300 300 -0.5 20 85 90 85 M8 Machine Screw PA75400 400 0 20 120 120 120 M8 Machine Screw 8

115

115

115

115

M8 Machine Screw

500 -0.

20

•PA Plate Standard Part Configuration

PA75500

For W=18, 28, 38, or 48 S N Rmax=6.3s All Around	
L For W=35 or 50	†
For W=75 Sp Sp Sp Sp Sp Sp Sp S	round

Part Number	Width	Length		Mount	ing-Hol	e Pitch		Mounting-Hole Bo	olt
T art Number	W	L	а	b	С	d	е	Bolt Type	Quantity
PA1875		75 -0.2	15	45				M6 Hexagon-Socket Head Cap	2
PA18100	18 -0.2	100 -0.2	25	50				M6 Hexagon-Socket Head Cap	2
PA18125	10 -0.2	125 -0.2	25	75				M6 Hexagon-Socket Head Cap	2
PA18150		150 -0.2	25	100				M6 Hexagon-Socket Head Cap	2
PA2875		75 -0.2	15	45				M6 Hexagon-Socket Head Cap	2
PA28100	28 .0.2	100 -0.2	25	50				M6 Hexagon-Socket Head Cap	2
PA28125	20 -0.2	125 -0.2	25	75				M6 Hexagon-Socket Head Cap	2
PA28150		150 -0.2	25	100				M6 Hexagon-Socket Head Cap	2
PA35100		100 -0.2	20	60				M8 Machine Screw	2
PA35150		150 -0.2	20	55	55			M8 Machine Screw	3
PA35200	05.0	200 -0.3	20	55	50	55		M8 Machine Screw	4
PA35250	35 -0.2	250 -0.3	20	70	70	70		M8 Machine Screw	4
PA35300		300 -0.3	20	65	65	65	65	M8 Machine Screw	5
PA35350		350 -0.3	20	80	75	75	80	M8 Machine Screw	5
PA3875		75 -0.2	15	45				M6 Hexagon-Socket Head Cap	2
PA38100	00 0	100 -0.2	25	50				M6 Hexagon-Socket Head Cap	2
PA38125	38 -0.2	125 -0.2	25	75				M6 Hexagon-Socket Head Cap	2
PA38150		150 -0.2	25	100				M6 Hexagon-Socket Head Cap	2
PA4875		75 -0.2	15	45				M6 Hexagon-Socket Head Cap	2
PA48100]	100 -0.2	25	50				M6 Hexagon-Socket Head Cap	2
PA48125	48 -0.2	125 -0.2	25	75				M6 Hexagon-Socket Head Cap	2
PA48150		150 0	25	100				M6 Hexagon-Socket Head Cap	2
PA50100		100 -0.2	20	60				M8 Machine Screw	2
PA50150]	150 -0.2	20	55	55			M8 Machine Screw	3
PA50200]	200 -0.3	20	55	50	55		M8 Machine Screw	4
PA50250	50 -0.2	250 -0.3	20	70	70	70		M8 Machine Screw	4
PA50300]	300 -0.3	20	65	65	65	65	M8 Machine Screw	5
PA50400	1	400 0.5	20	90	90	90	90	M8 Machine Screw	5

^{*}Base metal is high-strength phosphor bronze.

^{*}Base metal is high-strength phosphor bronze.

DAISLIDE L-Shaped

Designation of Part Number

LA 26100C

Please specify by part number.

(Unit: mm)

Dowt Nivershou	Ti //2 a	Length		Assembling	Hole Pitch	1	Assembling	Bolt
Part Number	Type	L	а	b	С	d	Bolt Dia	Q'ty
LA26100C	Type C	100	60				M8	2
LA26150C	Type C	150	55	55			M8	3
LA26200C	Type C	200	55	50	55		M8	4
LA32100B	Type B	100	60				M10	2
LA32150B	Type B	150	55	55			M10	3
LA32200B	Type B	200	55	50	55		M10	4
LA32250B	Type B	250	70	70	70		M10	4
LA50200A	Type A	200	55	50	55		M10	4
LA50250A	Type A	250	70	70	70		M10	4
LA50300A	Type A	300	65	65	65	65	M10	5
LA50350A	Type A	350	80	75	75	80	M10	5

^{*}Base metal is high-strength phosphor bronze.

•Shape of Standard LA Plate Product

(oil-impregnated sintered bearings)

We produce oil-impregnated sintered copper and steel bearings to customer specifications.

Material properties and major applications

	Materials and symbols		Copper				Steel		
	Symbols	DLC-00	DLC-07	DLC-15	DLF-98	DLF-98C	DLF-55	DLF-53	DLF-53C
t%)	Cu	Residual	Residual	Residual	1–3	1–3	25–35	38–48	38–48
w) u	Sn	8–11	8–11	8–11	-	_	_	2–4	2–4
sitio	О	1	0.5–1	1–2	ı	0.2-0.8	_	_	0.2-0.8
composition (wt%)	Pb	1	1	-	I	_	_	_	_
	Zn	_	_	_	_	_	_	_	_
Chemical	Fe	1	-	-	Residual	Residual	Residual	Residual	Residual
Ch	Other	0.5 or less	0.5 or less	0.5 or less	3 or less	3 or less	3 or less	3 or less	3 or less
Radi	al crushing strength N/mm ²	150–360	150–200	120–170	200-300	250–350	140-200	150-250	150–250
	Density g/cm ³	6.4–7.2	6.2-7.0	6.2–7.0	5.6-6.4	5.6-6.4	5.8-6.5	5.8-6.5	5.8–6.5
Oil	content (min. vol%)	12	18	15	18	18	15	15	15
PV v	alue limit in MPa·m/min	80	100	100	100	150	100	120	150
	High speed	×	0	0	0	0	0	0	0
-	Medium speed	\circ	0	0	0	0	\circ	0	0
Speed	Low speed	0	0	0	0	0	0	0	0
0)	Intermittent	×	0	0	0	0	\circ	0	0
	Oscillating	×	\triangle	0	\triangle	\triangle	0	0	0
	Load	High	Medium	Medium	High	High	Medium	Medium	Medium
	Acoustics	0	0	0	\triangle	Δ	0	Δ	0
	Machinability	0	0	\triangle	0	\triangle	0	0	\triangle

Symbol	Applications	Characteristics		
DLC-00	Tape recorders, carriages, miniature motors	Excellent machining and caulking properties		
DLC-07	Tape recorders, cash registers, carriages	Excellent caulking properties		
DLC-15	Fans, exhaust fans, capstans	Low-noise bearings, general purpose material for oil-impregnated sintered copper bearings		
DLF-98	Speedometers, collars, gears, boxes	Excellent machining and caulking properties, suitable for use in mechanical structures		
DLF-98C	Geared motors, spacers, steering systems	High strength, general purpose material for oil-impregnated sintered steel bearings		
DLF-55	Office automation equipment, AC motors	Low-noise bearing, alternative to copper, excellent conformability		
DLF-53	Office automation equipment, AC motors	Excellent conformability		
DLF-53C	Office automation equipment, AC motors, stepping motors			

Types of oil impregnation

ISO VG68 turbine oil or equivalent is standard, but other oils can be impregnated per customer specifications.

Dimensional tolerances

JIS B 1581 or equivalent. High-precision bearings are manufactured per customer specifications. Please inquire directly.

Metallic bearing materials

Steel bushing (lubricated metal)

We also manufacture wound bushings made of steel or stainless steel without any slide bearing alloys. Also, DAISULPH surface treatments for enhancing tribological properties of surfaces are also available.

Material properties

Symbol	Chemical composition (wt%)							
Symbol	Fe	С	Ni	Cr	Si	Mn	Р	S
SUS304 (18-8 stainless steel)	Residual	0.08 or less	8.00 - 10.50	18.00 – 20.00	1.00 or less	2.00 or less	0.45 or less	0.030 or less
SPCC (cold-rolled narrow)	Residual	0.08 or less	8.00 - 10.50	18.00 – 20.00	1.00 or less	2.00 or less	0.45 or less	0.030 or less
SAPH (rolled steel)	Residual	0.08 or less	8.00 - 10.50	18.00 – 20.00	1.00 or less	2.00 or less	0.45 or less	0.030 or less

DAISULPH surface treatment

Symbol	Features	Hardness		
DSN (carbonitriding)	Wear resistant	Hv700 or higher		
DSS (sulphur nitriding)	Non-seizing, wear resistant	Hv600 or higher		
DSM (sulphur nitriding plus molybdenum disulfide coating)	Non-seizing, non-lubricated (dry)	(Treated layer) Hv600 or higher		

Geometry and dimensions

Wound bushing

Manufacturing range

Outer diameter (D): 5- to 200-mm dia. Thickness (t): 0.5-3.0 mm

Length (L): 5-100

Metallic bearing materials

Metallic bearing (lubricated metal)

Metallic bearing (lubricated metal)

The use of bimetal or trimetal linings made of bearing alloys on a steel backing provides these lubricated metal bearings with good mechanical strength and makes them suitable for high-speed, high-load applications with proper lubrication.

Material properties

Bearing	Dua duat Na	Equivalent		Che	emica	al cor	npos	ition	(%)		Oh ava ataviatia a
material	Product No.	Equivalent SAE No.	Cu	Sn	Pb	Sb	Al	Ni	Si	Graphite	Characteristics
White metal	W90	11	4	Residual		6					Excellent resistance to seizing, emebeddability, and conformability
	B11	_	Residual	11							Sintered bronze withstands heavy loads.
	LG21X	-	Residual	3	21						Solid lubricant embedded in bronze for excellent boundary lubrication
Conner alley	L10	792 797	Residual	10	10			<1			Superior impact load characteristics. Excellent wear resistance and corrosion resistance when using hardened axles.
Copper alloy	L23	794 799	Residual	3	23			<1			Suitable for use at high speeds, with more lead than L10 and excellent tribological properties.
	BO5BS		Residual	6						Other Bi:0.5	Lead-free bearing materials with excellent resistance to both wear and seizing.
	NB6X		Residual	6						Other Ni:3	Excellent resistance to both corrosion and wear, especially in high heat at heavy surface pressures.
	CX4		Residual	10						Other Bi:0.5	Excellent resistance to fatigue
	A20	_	1	20			Residual				Excellent load bearing characteristics
Aluminum alloy	A17X	_	0.7	12	1.7	0.3	Residual		2.5	Other	Excellent performance non-seizing properties in heavy-duty, high-speed engines
, adminiant anoy	A66T		1	6			Residual		6	Other	Lead-free bearing materials with excellent resistance to both wear and seizing.
	A22E		1	12			Residual				

Typical design

	dimensions	11	A 1 1:		limensions	D //	T1: 1
Bushing inner diameter	Housing inner diameter	Housing inner diameter H7	Axle diameter f7, e7	Housing inner diameter H7 after assembly	Bushing outer diameter	Bushing length	Thickness (alloy thickness 0.3 mm)
10	12	12 +0.018	10 _{f7} -0.013 -0.028	10 +0.015	12 +0.068 +0.043	5. 10. 15	
12	14	14 +0.018	12 _{f7} -0.016 -0.034	12 +0.018	14 ^{+0.068} _{+0.043}	5. 15. 20	1.0 0
15	17	17 +0.018	15 -0.016 -0.034	15 ^{+0.018}	17 +0.068 +0.043	10. 15. 20	1.U -0.015
18	20	20 +0.021	18 -0.016 -0.034	18 ^{+0.018}	20 +0.086 +0.056	10. 20. 30	
20	23	23 +0.021	20 _{f7} -0.020 -0.041	20 +0.021	23 +0.086 +0.056	10. 20. 30	
22	25	25 ^{+0.021}	22 -0.020 -0.041	22 +0.021	25 ^{+0.086} _{+0.056}	15. 25. 40	1.5 0 -0.015
25	28	28 +0.021	25 -0.020 -0.041	25 +0.021	28 +0.086 +0.056	15. 30. 40	
28	32	32 +0.025	28 -0.020 -0.041	28 +0.021	32 ^{+0.115} _{+0.075}	15. 30. 50	
30	34	34 0 0 0	30 -0.020 -0.041	30 +0.021	34 ^{+0.115} _{+0.075}	15. 30. 50	
32	36	36 ^{+0.025}	32 f7 -0.025 -0.050	32 ^{+0.025}	36 ^{+0.115} _{+0.075}	20. 40. 50	
35	39	39 ^{+0.025}	35 -0.025 -0.050	35 ^{+0.025}	39 ^{+0.115} _{+0.075}	20. 40. 60	2.0 -0.02
38	42	42 +0.025	38 -0.025 -0.050	38 +0.025	42 +0.115 +0.075	20. 40. 60	
40	44	44 +0.025	40 -0.025 -0.050	40 +0.025	44 +0.115 +0.075	20. 40. 60	
42	46	46 0 +0.025	42 -0.025 -0.050	42 +0.025	46 +0.115 +0.075	20. 40. 60	
45	50	50 +0.025 0	45 -0.025 -0.050	45 +0.025	50 ^{+0.115} _{+0.075}	30. 50. 80	
48	53	53 +0.030 °C	48 -0.025 -0.050	48 +0.025	53 ^{+0.145} _{+0.095}	30. 50. 80	
50	55	55 +0.030	50 -0.025 -0.050	50 ^{+0.025}	55 ^{+0.145} _{+0.095}	30. 50. 80	
52	57	57 ^{+0.030}	52 _{e7} -0.060 -0.090	52 ^{+0.030}	57 ^{+0.145} _{+0.095}	30. 60. 80	2.5 0 -0.025
55	60	60 ^{+0.030}	55 -0.060 -0.090	55 ^{+0.030}	60 +0.145 +0.095	30. 60. 90	
60	65	65 +0.030	60 -0.090	60 +0.030	65 ^{+0.145} _{+0.095}	30. 60. 90	
65	70	70 +0.030	65 -0.090	65 ^{+0.030}	70 +0.145 +0.095	30. 70.100	
70	76	76 +0.030	70 -0.060 -0.090	70 +0.030	76 ^{+0.160} _{+0.095}	40. 70.100	
75	81	81 ^{+0.035}	75 -0.060 -0.090	75 +0.030	81 +0.165 +0.100	40. 80.100	
80	86	86 +0.035	80 -0.060	80 +0.030	86 +0.165 +0.100	40. 80. 100	3.0 0
85	91	91 +0.035	85 _{e7} -0.072 -0.107	85 ^{+0.035}	91 ^{+0.165} +0.100	40. 90.100	J.U -0.03
90	96	96 +0.035	90 -0.072 -0.107	90 +0.035	96 +0.165	50. 100	
100	106	106 +0.035	100 -0.072 -0.107	100 +0.035	106 ^{+0.180} _{+0.115}	50. 100	
110	117	117 +0.035	110 -0.072 -0.107	110 +0.035	117 +0.180 +0.115	60. 100	3.5 0
120	127	127 +0.040	120 -0.072 -0.107	120 +0.035	127 ^{+0.185} _{+0.120}	60. 100	J.J -0.035

This is a made-to-order product, for which we maintain no inventory. Depending upon actual usage conditions, additional design work for oil grooves and lubrication channels might be necessary.

NB1: We make every effort to ensure that the dimensions and geometry of oil grooves and lubrication channels are optimally designed.

NB2: When inner diameter finishing is performed after assembly, we manufacture a semi-product with sufficient finishing allowance built into the upper surface thickness.

When requesting design work, please attach your drawings to the Bearing Specification Sheet for Lubricated Bearings found at the end of this catalog and send both to Daido Metal.

Metallic bearing materials Compact assemblies (all types of mating parts for bearings)

Daido metal polymer bearings can be applied in the design and manufacture of assemblies suited to the customers' needs.

- · Feel free to consult with us on bearing housing materials that meet your requirements.
- · We also manufacture insert-molded plastic housing products.

Geometry

- 1)Cylinder 2)Flanged cylinder 3)Rectangle
- 4 Geared 5 Spherical
- **6** All types of deformed geometries

Housing materials

- ②**FC** 1)Steel ③FCD
- **4** Sintered steel (5) Aluminum alloy
- 6 Plastics (polyoxymethylene (POM), nylon, etc.)

Applications

- 1) Automotive parts
- 2 Office automation equipment parts
- 3 Industrial machinery parts
- 4 Energy-saving equipment parts

Applications

1. What are dry bearings?

Dry bearings are designed to be used under dry operating conditions with no additional lubricant and have been developed to help simplify the construction of the device they are used in and to be suitable for maintenance-free operation.

In recent years, a wide variety of dry bearings have been developed in response to advances in design

③Boundary lubrication (semidry)

Loss of lubricating film results in contact between solids, with lubricant remaining in the depressions between asperities. This results in restrictions on PV values and V values, especially. Wear becomes the deciding factor in determining service life.

4 Non-lubricated (dry)

Dry friction in the absence of any lubrication except for solid lubricants, which is to say, dry bearings. PV and V values must be very small and wear determines service life.

2. Types of sliding bearings

technology and demands for greater reliability.

Lubrication regimes

Sliding bearings are used under four different lubrication regimes: hydrodynamic, elastohydrodynamic, boundary, and non-lubricated.

①Hydrodynamic lubrication

Liquid lubrication provides an axle with support from a thin film of liquid lubricant, thereby eliminating wear and providing a semi permanent service life. The service life is determined by fatigue that is a result of dynamic loading. In general, there are no limits on PV or V values, but it is necessary to take care with maximum pressure (Pmax), maximum temperature (Tmax), and the minimum thickness (Hmin) to which the lubricating film is subject.

Fig. 1: Formation of lubricating film by liquid lubricants

②Elastohydrodynamic lubrication

This is a field that can still be understood in terms of fluid mechanics. There are limitations placed on PV values, however, because of contact between raised solid features, also called asperities, along the sliding surface. This results in wear and the need to be aware of the potential for seizing.

Comparison of sliding bearings and rolling bearings

Here is a comparison of sliding bearings with rolling bearings in each of the four lubrication regimes.

1) Hydrodynamic lubrication Resistance to heavy loading

②Elastohydrodynamic lubrication
Example of a DAIDYNE DDK02 sliding bearing

3Boundary lubrication

Example of a DAIBEST DBX01 grease-lubricated sliding bearing

(A)Non-lubricated (dry) Example of a DAIDYNE DDK05 sliding bearing

Table 1: Comparison of sliding bearings and rolling bearings

Characteristics	Sliding bearing	Rolling bearing
Impact resistance	Superior	Inferior
Corrosion resistance	Generally superior, depending upon type	Inferior
Water resistance	Generally superior, depending upon type	Inferior
Oscillating motion	Significantly superior	Inferior
Reciprocating motion	Superior	Only with linear or stroke ball bearings
Intermittent motion	Superior	Superior
Contamination acceptance	Superior, depending upon selection of materials and processing	Inferior
Weight	Light	Heavy
Availability	Some standard models available.	Standard models available.
Geometry	High degree of freedom	Very low degree of freedom
Price	Standard models are generally less costly than rolling bearings	

NB: The above stated comparisons are of typical performance levels. Careful design and selection of materials will improve the performance of any type of for sliding bearing. Please fill out the Bearing Specification Sheet found at the end of this catalog and direct your inquiry to Daido Metal.

3. Design of sliding bearings

Design procedure and study items

The procedures and study items necessary to the design of a sliding bearing suitable for the intended application are shown below.

Procedure

Study items

Validate P · V and the maximum

Determine necessity for external

Verify outer diameter of sliding bearing. Validate

ninimum lubricating film thickness, power loss, eat generation, and other parameters.

(lubrication model) Validate necessity for oil

rooves, lubrication channels, indents, etc. ubrication model) Validate clearances.

/alidate the materials, roughness, igidity, and other aspects of the

hardness, surface finish, and other

aspects of mating surfaces. Validate

ermeasures for contamination.

ousing. Validate materials, roughne

allowable PV value.

Determine

Specify target values for axle diameter, bearing width, outer diameter, housing Determine a basic materials, lubrication regime, and other layout for the sliding parameters, as suitable for the object bearing. of the design and development.

Determine the dimensions of the sliding bearing.

 $\mathbf{+}$

bearing

5 existing products and similar products.

Refer to detailed specifications for similar products, if available

6 sliding bearings

 $\mathbf{+}$ Validate the area around the sliding bearing.

8 Complete design of sliding bearings

P. V. PV value, and maximum allowable PV value

Here is a comparison of sliding bearings with rolling bearings in each of the four lubrication regimes.

①Specific Load (P)

The term surface pressure refers to the load per unit area applied to a sliding surface.

$$P(MPa) = \frac{W}{d \cdot L}$$
 (Equation. 1)

W: the load applied to the bearing in N d: diameter of the axle in mm, L: width of the bearing in mm

The value d · L is a projected area and larger than the actual area of contact, but is used for practical convenience.

Find the surface pressure P for a standard K5B2015 bearing to which a load of 6 kN is applied.

Answer:

Axle diameter: 20 mm, axle length: 15 mm

$$P = \frac{6000}{20 \times 15} = 20 (MPa)$$

2 Sliding speed (V)

The term sliding speed refers to speed of the bearing surface relative to the mating surface.

$$V(m/min) = \frac{\pi \cdot d \cdot N}{1000} \text{ (Equation. 2)}$$

V: speed in m/min d: diameter of the axle in mm N: rotational speed in rpm

Find the sliding speed for an axle with a 20-mm diameter rotating at a speed of 60 rpm.

$$V = \frac{\pi \times 20 \times 60}{1000} = 3.8 \text{ (m/min)}$$

3 PV value and maximum allowable PV value Selection of a suitable sliding bearing requires more than just satisfying requirements for P and V. The

product of P x V, or PV value, is the key to selecting the right sliding bearing.

Lubrication regimes	PV values in MPa·m/sec	P values in MPa	PV values in MPa·m/sec
Hydrodynamic lubrication	100	High	10
Elastohydrodynamic Iubrication	10	10	1
Boundary lubrication	1	↓ ↓	0.1
Non-lubricated (dry)	0.1	Low	0.01

Table 2: Order of PV, P, and V values per lubrication regime

4 Slide plate specific Load (P) and sliding speed (V)

$$P(MPa) = \frac{W}{R \cdot I}$$
 (Equation.3)

 $V(m/min) = \frac{S}{T} \cdot \frac{60}{1000} \text{ or } V = \frac{2SC}{1000} \text{ (Equation.4)}$

V: speed in m/min

W: the load applied to the slide plate in N

B: slide plate width

L: slide plate length S: stroke in mm

T: time to complete one stroke in seconds

C: number of cycles completed per minute

Find the surface pressure P for a 50 mm by 30 mm slide plate to which a load of 5 kN is applied.

$$P(MPa) = \frac{5000}{50 \times 30} = 3.3(MPa)$$

Example:

Find the sliding speed V for a slide plate with a stroke of 20 mm sliding along a mating surface at a rate of 50 cycles per minute.

Answer:

$$V = \frac{2 \times 50 \times 20}{1000}$$
 =2(m/min)

5 Thrust washer specific Load (P) and sliding speed (V)

$$P(MPa) = \frac{W}{\frac{\pi}{4} (D^2 - d^2)} \text{ (Equation. 5)}$$

$$V(m/min) = \frac{\pi \cdot \frac{D+d}{2} \cdot N}{1000} \text{ (Equation.6)}$$

$$NB: \text{ The thrust washer sliding speed is calculated based on the mean of the inner and outer diameters.}$$

P: pressure in MPa

V: speed in m/min

W: the load applied to the thrust washer in N

D: outer diameter of the thrust washer in mm d: inner diameter of the thrust washer in mm

Find the specific Load (P) and sliding speed (V) for a standard K5T20 thrust washer to which a load of 10 kN is applied at 20 rpm.

$$P = \frac{10000}{\frac{\pi}{4} (38^{2} - 22^{2})} = 13.3 \text{(MPa)}$$

$$V = \frac{\pi x \frac{(38 + 22)}{2} x20}{1000} = 1.9 \text{(m/min)}$$

Housing

- ①All Daido bearings are designed to be press fit into tolerance class H7 housings.
- ②To prevent scoring during press fitting, chamfer the press fit side as shown in the diagram below.

- ③We recommend a normal housing surface roughness of 6.3s, but a roughness of up to 12.5s is acceptable.
- ④In order to maintain rigidity, the outer diameter of a steel housing is ordinarily at least 150% of the axle diameter, but for aluminum or other light alloys, this should be at least 200%.

Axle (mating surface)

①We recommend a normal axle surface roughness of 0.8–1.6s, but a roughness of up to 3.2s is acceptable. Typical data showing the relationship between surface mating surface roughness and wear for DDK05 is shown in Fig. 11.

②Do not use the kinds of axles described below.

Thickness

Thickness for all standard products can be found by referring the related pages for that product. In general, bearings are classified as shown below.

Table 3: The Ratio of Thickness (T) to Outer Diameter (D)

Form	T/D
Thin-walled	0.03 – 0.06
Thick-walled metallic solid	0.08 - 0.12
Thick-walled plastic solid	0.1 – 0.15

Press-fitting margin

Prior to being press fit, the outer diameter of the bushing is larger than the inner diameter of the housing.

This differential is called a press-fitting margin, and the stress produced by pressing the bushing into the housing prevents the bushing from rotating or slipping out of the housing.

Minimum press-fitting margin = Bushing Dmin – Housing dmax

Maximum press-fitting margin = Bushing Dmax – Housing dmin (Equation. 7)

Example:

Find the press-fitting margin for a standard DDK05 bushing K5B2015 with a 23H7 $^{+0.021}_{0}$ housing.

Answer:

Bushing Dmax = 23.081 mm
Bushing Dmin = 23.046 mm
Housing dmax = 23.021 mm
Housing dmin = 23.000 mm
Minimum press-fitting margin = 23.046 - 23.021 = 0.025 mm
Maximum press-fitting margin = 23.046 - 23.000 = 0.081 mm

Inner diameter after assembly

Knowing the inner diameter after assembly is necessary to obtaining an accurate clearance between the axle and the bushing inner diameter.

• For bushings that give dimensions for outer diameter and thickness

To ensure that the housing has sufficient rigidity to prevent it from expanding after the press fitting: Assembled dmin = housing dmin – $2 \cdot Tmax$ (Equation. 8) Assembled dmax = housing dmax – $2 \cdot Tmin$

Example:

Find the assembled inner diameter (d) after press-fitting a standard DDK05 bushing K5B2015 to a housing with an inner diameter of 23H7 $^{+0.021}_{0.021}$.

Answer:

②For bearings that give dimensions for outer diameter and inner diameter

To ensure that the housing has sufficient rigidity to prevent it from expanding after the press fitting:

Assembled dmin = housing dmin
maximum press-fitting margin

Assembled dmax = housing dmax – minimum press-fitting margin (Equation. 9)

Example:

Find the assembled inner diameter (d) after press-fitting a standard THERMALLOY D type bushing DM20815 to a housing with an inner diameter of $28H7_0^{+0.021}$.

Answer:

D type bushing Dmax = 28.041 mm
Dmin = 28.028 mm
D type bushing dmax = 20.131 mm
dmin = 20.110 mm

Per Equation. 7

Minimum press-fitting margin = 28.028 - 28.021 = 0.007 mm

Maximum press-fitting margin = 28.041 - 28.000 = 0.041 mm

Assembled dmin = 20.110 - 0.041 = 20.069 mm

Assembled dmax = 20.131 - 0.007 = 20.124 mm

Assembled d = 20+0.124+0.069 mm

Clearance

①Calculating clearances

Minimum clearance =

assembled dmin – maximum axle diameter
Maximum clearance = (Equation. 10)

num clearance = (=qaasiorii re

assembled dmax - minimum axle diameter

Example:

Find the clearance for a standard DDK05 bushing K5B2015 press-fitted to a 23H7+0.0210+0 housing and equipped with a 20-mm diameter axle.

Answer:

The assembled d is 20 mm, per Formula No. 8. Clearancemin = 20.000 - 19.975 = 0.025 mm Clearancemax = 20.081 - 19.954 = 0.127 mm Clearance is between 0.127 and 0.025.

Service life

The service life of a metal polymer bearings is generally determined by wear to the bearing. Specific Load (P), sliding speed, lubrication parameters, surface roughness of the mating material, operating conditions, ambient conditions, and other factors have a major impact, which makes accurate calculation of wear extremely difficult.

The following formula is commonly used to approximate wear.

W = kPVT (Equation. 11)

W: wear in µm

P: specific Load (P) in MPa

k: coefficient of wear, equivalent to $\mu m \cdot cm2 \cdot min/N \cdot m \cdot H$

V: sliding speed in m/min

T: service life in hours

The factors that contribute to wear are shown in Fig. 13, and should be given thorough consideration when designing a sliding bearing.

Coefficient of friction

As shown in the diagram below, the coefficient of friction is the ratio of the force F needed to move the sliding surface to the weight W applied to the sliding surface.

Coefficient of friction: $\mu = \frac{F}{W}$ (Equation. 12)

Fig. 14: Coefficient of friction

Obviously, the coefficient of friction for bearings under hydrodynamic lubrication (0.002-0.01) is lowest and increases progressively through boundary lubrication (0.01-0.08) and non-lubricated (0.08-0.3) conditions.

Heat generation

Although friction surfaces are constantly generating heat, this can be ignored when the heat itself is low or heat dissipation is high. The amount of heat generated is equivalent to the friction loss of the bearing: Calorific value = the coefficient of friction · PV value · k (Equation. 13).

For bearings under hydrodynamic lubrication, the lubricant carries away almost all of the generated heat, but for boundary lubrication and non-lubricated bearing, it is necessary to find a way either to reduce the amount of heat generated or improve heat dissipation. Also, it is important to be aware that bearing performance tends to deteriorate as the temperature rises.

Basic production drawings for sliding bearings

A typical production drawing for a sliding bearing detailing parameters finalized per the above is shown

Bushing mounting techniques

OPress-fitting of bushings

Using a vice or an arbor press, set the bushing in a suitable mandrel and press fit smoothly into the housing. It is extremely important that a bushing be perpendicular to the housing as it is press fit. To facilitate press-fitting of bushing, chamfer the edge of the inner diameter at the end of the housing and lubricate slightly with oil. Also, use a stepped mandrel, as shown in Fig. 16, and take care not to damage the soft bearing surface as the busing is press fit. Never press fit a bushing by hitting it on the end with a hammer. We recommend using a mandrel and chamfer dimensions, as shown in Fig. 16.

2Calculating the force F required for press-fitting

 $F = 0.9tL\Phi(\delta/D)$ (Formula No. 14)

- F: force in newtons
- T: thickness of the backing in mm
- L: width of the bushing in mm
- Φ: Coefficient of stress or 1.9 x 105 MPa
- δ : fitting margin in mm
- D: outer diameter of the bushing in mm

NB: The coefficient of friction for the back of the bushing and the housing is assumed to be 0.15

Find the force F required for press-fitting a standard K5B2015 into a 23+0.021+0-diameter housing.

Answer:

Thickness = 1.5 mm Alloy thickness = 0.3 mm, therefore thickness of the backing T is 1.5 - 0.3 = 1.2Bushing length = 15 mm Fitting marginmin = 0.025 mm (per Formula No. 7) Fitting marginmax = 0.081 mm

Bushing Dmin = 23 mm

Fmin = $0.9 \times 1.2 \times 15 \times (1.9 \times 105) \times (0.025 \div 23) = 3,350 \text{ N}$ Fmax = $0.9 \times 1.2 \times 15 \times (1.9 \times 105) \times (0.081 \div 23) = 10,840 \text{ N}$

Mounting solid plastic bearings

Solid plastic bearings are subject to extreme fluctuations in temperature, thermal expansion and contraction could result in the bearing separating from the housing.

In such cases, apply the following countermeasures:

- ①Use a flanged bushing and fix the flange in place.
- 2 Provide the outer diameter with a geometry that prevents rotation.
- 3Fix in place with an adhesive.

Mounting slide plates

1Using flat head screws

The head of the screw must be sunk below the surface of the bearing alloy.

Qusing Allen head bolts or cheese head screws We recommend rounding or a 10–30° chamfer at A.

3Using dowel pins

The hole should be countersunk and the head of the pin caulked to ensure it is fixed in place.

4Using adhesives

Although a variety of adhesives are permissible, we recommend the used of epoxy glue. Also, be sure to select an adhesive suitable for the ambient conditions of the application.

Mounting thrust washers

OUsing flat head screws

Just as with slide plates, the head of the screw must be sunk below the surface of the bearing alloy.

2Using dowel pins

Just as with slide plates, the hole should be countersunk and the head of the pin caulked to ensure it is fixed in place.

3Using adhesives

Although a variety of adhesives are permissible, we recommend the used of epoxy glue. Also, be sure to select an adhesive suitable for the ambient conditions of the application.

Breaking in bearings

We recommend breaking in the bearings as described below prior to full time use.

- ①Be sure that the surface of the sliding bearing and its mating surface are both smooth.
- ②Able to alleviate localized interference due to misalignment.

Storing sliding bearings

Avoid the following when storing sliding bearings.

- ①Avoid exposure to direct sunlight.
- ②Avoid exposure to high temperatures or humidity.
- ③Avoid exposure to moisture, alkaline, or acid.
- Avoid exposure to dust or other foreign substances.

Plastic flow analysis

Plastic flow analysis is performed using computer software to simulate the flow of plastic during injection molding.

This simulation predicts the behavior of molten plastic inside the mold and is useful in analyzing the molding process in order to select materials, verify product geometry, and design the placement of gates and runners as well as to determine suitable manufacturing parameters and design countermeasures for short shots, weld lines, warping, sink marks, and other defects.

Also, structural analysis software enables evaluation of warping in parts made by insert molding processes.

A typical analysis

This is an analysis of a tip seal used in a scroll compressor.

The product was modeled using 3D CAD.

The STL and IGES data for the model was then read into the plastic flow analysis software and to create a mesh.

Material and forming parameters were input and an analysis performed.

The results included a filling analysis, a cooling analysis, a contraction and warping analysis, and a stress analysis.

Fig. 1: 3D model of the tip seal

Fig. 2: Filling analysis results (filling pattern)

Fig. 3: Filling analysis results (fiber orientation)

4. Approximate conversion values for Vickers hardness of steel

Excerpted from JISB0401 (1986)

Vick-		nell hardness n ball, 3000 kgf	Ro	ockwell hardnes	ss	Superficia Dia	al Rockwell I mond pyran	hardness nid	Shore
ers hard- ness	Standard ball	Tungsten carbide ball	A-scale, 60 kgf Diamond pyramid	B-scale, 100 kgf 1.6-mm (1/16") ball	C-scale, 150 kgf Diamond pyramid	15N scale, 15 kgf	30N scale, 30 kgf	45N scale, 45 kgf	hard
940	_	_	85-6	_	68-0	93-2	84-4	75-4	97
920	_	_	85-3	_	67-5	93-0	84-0	74-8	96
900	_	_	85.0	_	67-0	92-9	83-6	74-2	95
880	_	(767)	84.7	_	66-4	92.7	83-1	73-6	93
860	_	(757)	84-4	_	65-9	92.5	82.7	73-1	92
840	_	(745)	84-1	_	65-3	92.3	82-2	72-2	91
820	_	(733)	83-8	_	64-7	92·1	81.7	71.8	90
800	_	(722)	83-4	_	64-0	91.8	81-1	71.0	88
780	_	(710)	83-0	_	63-3	91.5	80-4	70-2	87
760	_	(698)	82.6	_	62-5	91.2	79.7	69-4	86
740	-	(684)	82-2	_	61.8	91.0	79-1	68-6	84
720	_	(670)	81.8	_	61-0	90.7	78-4	67-7	83
700	_	(656)	81.3	_	60-1	90-3	77-6	66-7	81
690	_	(647)	81·1	_	59-7	90.1	77-2	66-2	-
680	_	(638)	80-8	_	59-2	89-8	76-8	65.7	80
670	_	630	80-6	_	58-8	89.7	76-4	65-3	-
660	_	620	80.3	_	58-3	89-5	75-9	64.7	79
650	_	611	80-0	_	57.8	89-2	75.5	64-1	-
640	_	601	79-8	_	57:3	89-0	75-1	63-5	77
630	_	591	79.5	_	56-8	88-8	74-6	63.0	-
620	_	582	79-2	_	56-3	88-5	74-2	62·4	75
610	_	573	78-9	_	55.7	88-2	73-6	61.7	-
600	_	564	78-6	_	55-2	88-0	73-2	61-2	74
590	_	554	78-4	_	54.7	87.8	72.7	60-5	_
580	_	545	78-0	_	54·1	87-5	72-1	59-9	72
570	_	535	77.8	_	53-6	87-2	71.7	59-3	-
560	_	525	77-4	_	53-0	86-9	71-2	58-6	71
550	(505)	517	77.0	_	52.3	86-6	70.5	57-8	-
540	(496)	507	76-7	_	51.7	86-3	70-0	57-0	69
530	(488)	497	76-4	_	51.1	86-0	69-5	56-2	-
520	(480)	488	76-1	_	50-5	85.7	69-0	55-6	67
510	(473)	479	75-7	_	49-8	85-4	68-3	54.7	-
500	(465)	471	75-3	_	49-1	85-0	67-7	53-9	66
490	(456)	460	74-9	_	48-4	84.7	67-1	53·1	-
480	448	452	74.5	_	47-7	84-3	66-4	52-2	64
470	441	442	74-1	_	46-9	83.9	65.7	51.3	-
460	433	433	73-6	_	46-1	83-6	64-9	50-4	62
450	425	425	73-3	_	45-3	83-2	64.3	49-4	-
440	415	415	72.8	_	44-5	82-8	63-5	48-4	59
430	405	405	72.3	_	43-6	82-3	62.7	47-4	-
420	397	397	71.8	_	42.7	81.8	61.9	46-4	57

Vick-		nell hardness n ball, 3000 kgf	Ro	ockwell hardnes	SS	Superficial Rockwell hardness Diamond pyramid					
ers hard- ness	Standard ball	Tungsten carbide ball	A-scale, 60 kgf Diamond pyramid	B-scale, 100 kgf 1.6-mm (1/16") ball	C-scale, 150 kgf Diamond pyramid	15N scale, 15 kgf	30N scale, 30 kgf	45N scale, 45 kgf	Shore hard- ness		
410	388	388	71.4	_	41.8	81-4	61.1	45.3	-		
400	379	379	70-8	_	40.8	81.0	60.2	44.1	55		
390	369	369	70.3	_	39-8	80.3	59-3	42-9	_		
380	360	360	69-8	(110-0)	38-8	79.8	58-4	41.7	52		
370	350	350	69-2	_	37.7	79-2	57.4	40.4	-		
360	341	341	68-7	(109-0)	36-6	78-6	56.4	39-1	50		
350	331	331	68-1	_	35-5	78.0	55.4	37.8	-		
340	322	322	67.6	(108-0)	34.4	77-4	54.4	36.5	47		
330	313	313	67-0	_	33-3	76-8	53-6	35-2	_		
320	303	303	66-4	(107-0)	32-2	76-2	52.3	33.9	45		
310	294	294	65-8		31.0	75-6	51.3	32.5	_		
300	284	284	65-2	(105.5)	29-8	74.9	50.2	31.1	42		
295	280	280	64-8		29-2	74-6	49.7	30-4	_		
290	275	275	64.5	(104-5)	28.5	74-2	49.0	29.5	41		
285	270	270	64-2		27.8	73.8	48-4	28.7	_		
280	265	265	63.8	(103-5)	27·1	73.4	47.8	27.9	40		
275	261	261	63.5		26-4	73.0	47-2	27.1	_		
270	256	256	63-1	(102·0)	25-6	72.6	46-4	26.2	38		
265	252	252	62.7	_	24.8	72-1	45.7	25.2	_		
260	247	247	62.4	(101-0)	24.0	71.6	45.0	24.3	37		
255	243	243	62.0	_	23.1	71.1	44-2	23.2	_		
250	238	238	61.6	99.5	22.2	70.6	43.4	22.2	36		
245	233	233	61.2	_	21.3	70-1	42.5	21.1	_		
240	228	228	60.7	98-1	20.3	69-6	41.7	19.9	34		
230	219	219	_	96.7	(18-0)	_	_	_	33		
220	209	209	_	95.0	(15·7)	_	_	_	32		
210	200	200	_	93-4	(13.4)	_	_	_	30		
200	190	190	_	91.5	(11.0)	_	_	_	29		
190	181	181	_	89.5	(8.5)	_	_	_	28		
180	171	171	_	87·1	(6.0)	_	_	_	26		
170	162	162	_	85.0	(3.0)	_	_	_	25		
160	152	152	_	81.7	(0.0)	_	_	_	24		
150	143	143	_	78.7	_	_	_	_	22		
140	133	133	_	75.0	_	_	_	_	21		
130	124	124	_	71.2	_	_	_	_	20		
120	114	114		66.7	_	_	_				
110	105	105	_	62.3	_	_	_	_	_		
100	95	95		56.2			_		_		
95	90	90		52.0	_	_	_		_		
90	86	86	_	48.0	_	_	_	_			
85	81	00 81	_	46.0				_			

Excerpted from SAE J 417

5. Dimensional tolerances for holes used for normal fit

Excerpted from JISB0401 (1986)

	nsions mm)		Hole tolerance class																
more than	or less	B10	C7	C8	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	H6	H7
_	3	+180 +140	+70 +60	+74 +60	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10 0
3	6	+188 +140	+82 +70	+88 +70	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8	
6	10	+208 +150	+95 +80	+102 +80	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9 0	+15 0
10	14	+220	+113	+122	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18
14	18	+150	+95	+95	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0
18	24	+244	+131	+143	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21
24	30	+160	+110	+110	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0
30	40	+270 +170	+145 +120	+159 +120	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25
40	50	+280 +180	+155 +130	+169 +130	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0
50	65	+310 +190	+170 +140	+186 +140	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30
65	80	+320 +200	+180 +150	+196 +150	+224 +150	+270 +150	+100	+100	+100	+60	+60	+60	+30	+30	+30	+10	+10	0	0
80	100	+360 +220	+205 +170	+224 +170	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35
100	120	+380	+215 +180	+234 +180	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0
120	140	+420 +260	+240 +200	+263 +200	+300	+360 +200													
140	160	+440	+250 +210	+273 +210	+310 +210	+370 +210	+208	+245 +145	+305	+125 +85	+148 +85	+185 +85	+68 +43	+83 +43	+106	+39 +14	+54 +14	+25	+40
160	180	+470 +310	+270 +230	+293 +230	+330 +230	+390 +230													
180	200	+525 +340	+286 +240	+312 +240	+355 +240	+425 +240													
200	225	+565 +380	+306 +260	+332	+375 +260	+445 +260	+242 +170	+285 +170	+355 +170	+146 +100	+172 +100	+215 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29	+46 0
225	250	+605 +420	+326 +280	+352 +280	+395 +280	+465 +280													
250	280	+690 +480	+352	+381 +300	+430 +300	+510 +300	+271	+320	+400	+162	+191	+240	+83	+108	+137	+49	+69	+32	+52
280	315	+750 +540	+382	+411	+460 +330	+540 +330	+190	+190	+190	+110	+110	+110	+56	+56	+56	+17	+17	0	0

Dimer (in i	nsions mm)	Hole tolerance class																	
more than	or less	H8	H9	H10	JS6	JS7	K6	K7	M6	M7	N6	N7	P6	P7	R7	S7	T7	U7	X7
_	3	+14 0	+25 0	+40 0	±3.0	±5	0 -6	0 -10	-2 -8	-2 -12	-4 -10	-4 -14	-6 -12	-6 -16	-10 -20	-14 -24	_	-18 -28	-20 -30
3	6	+18 0	+30	+48 0	±4.0	±6	+2 -6	+3 -9	-1 -9	0 -12	-5 -13	-4 -16	-9 -17	-8 -20	-11 -23	-15 -27	_	-19 -31	-24 -36
6	10	+22 0	+36	+58 0	±4.5	±7	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19	-12 -21	-9 -24	-13 -28	-17 -32	_	-22 -37	-28 -43
10	14	+27	+43	+70	±5.5	±9	+2	+6	-4	0	-9	-5	-15	-11	-16	-21		-26	-33 -51
14	18	0	0	0	15.5	±9	-9	-12	-15	-18	-20	-23	-26	-29	-34	-39	_	-44	-38 -56
18	24	+33	+52	+84	±6.5	.10	+2	+6	-4	0	-11	-7	-18	-14	-20	-27	_	-33 -54	-46 -67
24	30	0	0	0	±0.5	±10	-11	-15	-17	-21	-24	-28	-31	-35	-41	-48	-33 -54	-40 -61	-56 -77
30	40	+39	+62	+100	±8.0	±12	+3	+7	-4	0	-12	-8	-21	-17	-25	-34	-39 -64	-51 -76	
40	50	0	0	0	±0.0	±12	-13	-18	-20	-25	-28	-33	-37	-42	-50	-59	-45 -70	-61 -86	_
50	65	+46	+74	+120	±9.5	±15	+4	+9	-5	0	-14	-9	-26	-21	-30 -60	-42 -72	-55 -85	-76 -106	
65	80	0	0	0	±9.5	±IO	-15	-21	-24	-30	-33	-39	-45	-51	-32 -62	-48 -78	-64 -94	-91 -121	_
80	100	+54	+87	+140	±11.0	±17	+4	+10	-6	0	-16	-10	-30	-24	-38 -73	-58 -93	-78 -113	-111 -146	
100	120	0	0	0	±11.0	±17	-18	-25	-28	-35	-38	-45	-52	-59	-41 -76	-66 -101	-91 -126	-131 -166	_
120	140														-48 -88	-77 -117	-107 -147		
140	160	+63 0	+100 0	+160 0	±12.5	±20	+4 -21	+12 -28	-8 -33	0 -40	-20 -45	-12 -52	-36 -61	-28 -68	-50 -90	-85 -125	-119 -159	-	_
160	180														-53 -93	-93 -133	-131 -171		
180	200														-60 -106	-105 -151			
200	225	+72 0	+115 0	+185 0	±14.5	±23	+5 -24	+13 -33	-8 -37	0 -46	-22 -51	-14 -60	-41 -70	-33 -79	-63 -109	-113 -159	_	-	_
225	250														-67 -113	-123 -169			
250	280	+81	+130	+210	.16.0	. 26	+5	+16	-9	0	-25	-14	-47	-36	-74 -126				
280	315	0	0	0	±16.0	±26	-27	-36	-41	-52	-57	-66	-79	-88	-78 -130	_	_	_	_

Reference: The upper figure in each cell indicates the upper tolerance and the lower figure in each cell indicates the lower tolerance for the given class.

6. Dimensional tolerances for shafts used for normal fit Excerpted from JISB0401 (1986)

																	Uni	ts: µm
	nsions mm)							Shaf	tolera	ance o	class							
more than	or less	b9	с9	d8	d9	e7	e8	e9	f6	f7	f8	g5	g6	h5	h6	h7	h8	h9
_	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24	-14 -28	-14 -39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 -4	0 -6	0 -10	0 -14	0 -25
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32	-20 -38	-20 -50	-10 -18	-10 -22	-10 -28	-4 -9	-4 -12	0 -5	0 -8	0 -12	0 -18	0 -30
6	10	-150 -186	-80 -116	-40 -62	-40 -76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	-13 -35	-5 -11	-5 -14	0 -6	0 -9	0 -15	0 -22	0 -36
10	14	-150	-95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0	0	0
14	18	-193	-138	-77	-93	-50	-59	-75	-27	-34	-43	-14	-17	-8	-11	-18	-27	-43
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	-7	-7	0	0	0	0	0
24	30	-212	-162	-98	-117	-61	-73	-92	-33	-41	-53	-16	-20	-9	-13	-21	-33	-52
30	40	-170 -232	-120 -182	-80	-80	-50	-50	-50	-25	-25	-25	-9	-9	0	0	0	0	0
40	50	-180 -242	-130 -192	-119	-142	-75	-89	-112	-41	-50	-64	-20	-25	-11	-16	-25	-39	-62
50	65	-190 -264	-140 -214	-100	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0	0	0
65	80	-200 -274	-150 -224	-146	-174	-90	-106	-134	-49	-60	-76	-23	-29	-13	-19	-30	-46	-74
80	100	-220 -307	-170 -257	-120	-120	-72	-72	-72	-36	-36	-36	-12	-12	0	0	0	0	0
100	120	-240 -327	-180 -267	-174	-207	-107	-126	-159	-58	-71	-90	-27	-34	-15	-22	-35	-54	-87
120	140	-260 -360	-200 -300															
140	160	-280 -380	-210 -310	-145 -208	-145 -245	-85 -125	-85 -148	-85 -185	-43 -68	-43 -83	-43 -106	-14 -32	-14 -39	-18	-25	-40	-63	-100
160	180	-310 -410	-230 -330															
180	200	-340 -455	-240 -355															
200	225	-380 -495	-260 -375	-170 -242	-170 -285	-100 -146	-100 -172	-100 -215	-50 -79	-50 -96	-50 -122	-15 -35	-15 -44	-20	-29	-46	0 -72	-115
225	250	-420 -535	-280 -395															
250	280	-480 -610	-300 -430	-190	-190	-110	-110	-110	-56	-56	-56	-17	-17	0	0	0	0	0
280	315	-540 -670	-330 -460	-271	-320	-162	-191	-240	-88	-108	-137	-40	-49	-23	-32	-52	-81	-130

	nsions mm)					Sł	naft to	lerand	e clas	SS					
more than	or less	js5	js6	js7	k5	k6	m5	m6	n6	p6	r6	s6	t6	u6	x6
-	3	±2.0	±3.0	±5	+4 0	+6 0	+6 +2	+8 +2	+10 +4	+12 +6	+16 +10	+20 +14	-	+24 +18	+20 +20
3	6	±2.5	±4.0	±6	+6 +1	+9 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +19	-	+31 +23	+36
6	10	±3.0	±4.5	±7	+7 +1	+10 +1	+12 +6	+15 +6	+19 +10	+24 +15	+28 +19	+32 +23	-	+37 +28	+4
10	14	±4.0	±5.5	. 0	+9	+12	+15	+18	+23	+29	+34	+39		+44	+5 +4
14	18	±4.0	±5.5	±9	+1	+1	+7	+7	+12	+18	+23	+28	_	+33	+5 +4
18	24	4.5		. 10	+11	+15	+17	+21	+28	+35	+41	+48	-	+54 +41	+6 +5
24	30	±4.5	±6.5	±10	+2	+2	+8	+8	+15	+22	+28	+35	+54 +41	+61 +48	+7 +6
30	40			40	+13	+18	+20	+25	+33	+42	+50	+59	+64 +48	+76 +60	
40	50	±5.5	±8.0	±12	+2	+2	+9	+9	+17	+26	+34	+43	+70 +54	+86 +70	-
50	65				+15	+21	+24	+30	+39	+51	+60 +41	+72 +53	+85 +66	+106 +87	
65	80	±6.5	±9.5	±15	+2	+2	+11	+11	+20	+32	+62	+78 +59	+94 +75	+121 +102	-
80	100				+18	+25	+28	+35	+45	+59	+73 +51	+93 +71	+113 +91	+146 +124	
100	120	±7.5	±11.0	±17	+3	+3	+13	+13	+23	+37	+76 +54	+101 +79	+126 +104	+166	-
120	140										+88	+117 +92	+147 +122	7144	
140	160	±9.0	±12.5	±20	+21 +3	+28 +3	+33 +15	+40 +15	+52 +27	+68 +43	+90 +65	+125 +100	+159 +134	_	_
160	180				10	10	110	110	127	140	+93	+133 +108	+171 +146		
180	200										+106 +77	+151 +122	+140		
200	225	±10.0	±14.5	±23	+24	+33	+37 +17	+46	+60	+79 +50	+109 +80	+159 +130	_	_	_
225	250				+4	+4	+17	+17	+31	+50	+113	+169			
250	280				0.7	00	40				+84	+140			
280	315	±11.5	±16.0	±26	+27 +4	+36 +4	+43 +20	+52 +20	+66 +34	+88 +56	+94 +130 +98	_	-	-	-

Excerpted from JISB0401 (1986) Reference: The upper figure in each cell indicates the upper tolerance and the lower figure in each cell indicates the lower tolerance for the given class.

7. Defining and indicating surface roughness

Excerpted from JISB0601

Center Line Average Roughness (Ra)	Maximum Height of the Profile (Rmax)	Ten Point Average Roughness (Rz)
A value in micrometers (µm) found using the formula below when sampling along the center line of a roughness profile with the center line taken as the x-axis and the longitudinal magnification taken as the y-axis to display the roughness profile $y = f(x)$. $Ra = \frac{1}{\ell} \int_{0}^{\ell} f(x) dx$	A value in micrometers (µm) found by measuring the distance between two straight lines that are parallel to the moving average line when sampling along a datum length of the cross-section curve, and which are respectively tangent to the highest peak and the lowest valley of the cross-section curve.	A value in micrometers (µm) found by averaging the height of the five highest peaks and the five lowest valleys when sampling along the datum length, as measured from the moving average line.
$Ra = \frac{1}{\ell} \int_{0}^{1} \left f(x) \right dx(bm)$ $Roughness profile: y = f(x)$ X $Center line$	Direction of longitudinal magnification Datum length r Datum	Datum length L $Rz = \frac{1}{5} (\Sigma An - \Sigma Bn)$ Rection of polymer and magnification of polymer and poly

8. Standard sequences and datum lengths for surface roughness

Center Line Avera	ge Roughness (Ra)	Maximum Height of the Profile (Rmax)		1 Ten Point Average Roughness (Rz)	
Standard sequences	Cutoff value (mm)	Standard sequences	Datum length L (mm)	Standard sequences	Datum length L (mm)
0.013a 0.025a 0.05a 0.1a 0.2a		0.05s 0.1s 0.2s 0.4s 0.8s	0.25	0.05z 0.1z 0.2z 0.4z 0.8z	0.25
0.4a 0.8a 1.6a	0.8	1.6s 3.2s 6.3s	0.8	1.6z 3.2z 6.3z	0.8
3.2a 6.3a		12.5s 25.0s	2.5	12.5z 25.0z	2.5
12.5a 25.0a		50.0s 100.0s	8.0	50.0z 100.0z	8.0
50.0a 100.0a	2.5	200.0s 400.0s	25.0	200.0z 400.0z	25.0
Measurement length: At least 300% of the cutoff value.					

9. International System of Units (SI)

The world's industries presently use the International System of Units as a common system of measurement. This catalog utilizes SI units almost exclusively, but also presents units from earlier systems of measurement side by side for convenience.

(Showing only related units)

	<u> </u>	, ,
Classification	Conventional units	SI units*
Weight or Force	1.0kgf	9.8N
Specific	1.0kgf/cm ²	9.8×10 ⁻² MPa
load	1.0kgf/cm ²	9.8×10 ⁻² N/mm ²
PV value	1.0kgf/cm²·m/min	9.8×10 ⁻² MPa·m/min
Ctropo	1.0kgf/mm²	9.8MPa
Stress	1.0kgf/mm²	9.8N/mm²

^{*}NB: Figures are rounded to two decimal places.

Other SI units

A.1	Force

To convert from kgf to N: 1 kgf = 9.80665 N To convert from N to kgf: 1 N = 0.101972 kgf Ref: to convert from dyn to kN: 1 dyn = 1×10^{-2} kN

A.2 Pressure
To convert from mm H₂O to Pa: 1 mm H2O = 9.80665 Pa

To convert from Pa to mm H₂O: kPa = 0.101972 mm H₂O To convert from kgf/cm² to MPa: 1 kgf/cm² = 0.0980665 MPa To convert from MPa to kgf/cm²: 1 MPa = 10.1972 kgf/cm² To convert m H₂O tp kPa: $1 \text{ m H}_{2}O = 9.80665 \text{ kPa}$ To convert kPa to m H₂O: 1 kPa = 0.101972 m H₂O To convert atm to MPa: 1 atm = 0.101325 MPa To convert MPa to atm: 1 MPa = 9.86923 atm To convert mm Hg to kPa: 1 mm Hg = 0.133322 kPa 1 kPa = 7.50062 mm HgTo convert kPa to mm Hg: Ref: to convert bar to Pa: 1 bar = 1 × 105 Pa

A.3 Stress

To convert kgf/cm² to MPa: 1 kgf/cm² = 0.0980665 MPa
To convert MPa to kgf/cm²: 1 MPa = 10.1972 kgf/cm²
To convert kgf/mm² to MPa: 1 kgf/mm² = 9.80665 MPa
To convert MPa to kgf/mm²: 1 MPa = 0.101972 kgf/mm²
Ref: to convert N/mm² to MPa: 1 N/mm² = 1 MPa

A.4 Work and Energy

To convert from kgf·m to J: 1 kgf·m = 9.80665 JTo convert J to kgf·m: 1 J = 0.101972 kgf·m/s

A.5 Power

To convert kgf·m/s to W: 1 kgf·m/s = 9.80665 W To convert W to kgf·m/s: 1 W = 0.101972 kgf·m/s

B.1 Work and Energy

To convert kW·h to MJ: 1 kW·h = 3.6 MJ To convert MJ to kW·h: 1 MJ = 0.277778 kW·h

B.2 Power

To convert PS to kW: 1 PS = 0.7355 kW
To convert kW to PS: 1 kW = 1.35962 PS
B.3 Heat

3.3 Heat

To convert kcal to kJ: 1 kcal = 4.18605 kJ
To convert kJ to kcal: 1 kJ = 0.238889 kcal

B.4 Heat flow

To convert kcal/h to W: 1 kcal/h = 1.16279 W
To convert W to kcal/h: 1 W = 0.860 kcal/h

B.5 Thermal conductivity

To convert kcal/h (h \cdot m \cdot °C) to W/(m \cdot K): 1 kcal/(h \cdot m \cdot °C) = 1.16279 W/(m \cdot K) To convert W/(m \cdot K) to kcal/h (h \cdot m \cdot °C): 1 W/(m \cdot K) = 0.860 kcal/(h \cdot m \cdot °C)

B.6 Coefficient of heat transfer

To convert kcal/ (h \cdot m \cdot °C) to W/(m \cdot K): 1 kcal/(h \cdot m \cdot °C) = 1.16279 W/(m \cdot K) To convert W/(m \cdot K) to kcal/ (h \cdot m \cdot °C): 1 W/(m \cdot K) = 0.860 kcal/(h \cdot m \cdot °C)

B.7 Specific heat

To convert kcal/(kg · °C) to kJ/(kg · K): 1 kcal/(kg · °C) = 4.18605 kJ/(kg · K) To convert kJ/(kg · K) to kcal/(kg · °C): 1 kJ/(kg · K) = 0.238889 kcal/(kg · °C)

Reference 1. Viscosity

1 cP = $1 \times 10^{-3} \text{ Pa} \cdot \text{s} (1 \text{ Pa} \cdot \text{s} = 1 \times 10^{3} \text{ cP})$ 1 P = $1 \times 10^{-1} \text{ Pa} \cdot \text{s} (1 \text{ Pa} \cdot \text{s} = 10 \text{ P})$

2. Dynamic viscosity

1 cSt = 1×10^{-6} m²/s (1 m²/s = 1×10^{6} cSt) 1 St = 1×10^{-4} m²/s (1 m²/s = 1×10^{4} cSt)

CORPORATE PROFILE

Our Core Technologies Create Strong Trust and Unlimited Possibilities.

Daido Metal's Unique Technology

TBimetal Technology

The term "bimetal" refers to a composite material made by bonding one of a variety of special bearing layers onto a base of steel plate. Daido Metal has established sophisticated bonding technology that extends to the atomic level and includes sintering, pressure welding, casting, and impregnation. We manufacture bimetals of all characteristics, using copper alloys, aluminum alloys, polymers, and other materials. Our starting point for high-quality bearings is the development of the bimetal. This attitude is the main reason that the Daido Metal brand is so well trusted.

Daido Metal's Unique Technology

2 Precision Processing Technology

orming

The bimetal must be subjected to forming technology in order to generate a product. High-precision machining is required in all processes at this stage, whether we are using press cutting technology for precision cutting, press working to bend parts into half-bearing or cylindrical shapes, or finishing to the optimum thickness in the final process. In order to make these kinds of work possible, we design and manufacture our own press molds and dedicated machinery in-house. Because we are backed up by technology accurate to the micron level, we are able to manufacture high quality bearings with constant reliability.

Daido Metal's Unique Technology

3Surface Treatment Technology

Addition of hard particles to the film.

This technology significantly enhances the wear resistance of the overlay by dispersing hard micro-particles uniformly throughout the film.

Smooth motion depends on the condition of the surfaces where friction occurs. This means that the overlay that covers the surface of the bearing layer plays a crucial role. Daido Metal is continually developing overlays and improving manufacturing methods, and has established its "surface treatment technology" to create a uniform film to high precision. We are also actively engaged in the development of new surface treatment technologies such as surface treatment, coating, and PVD (physical vapor deposition)

Bearings for Automobiles

Quality Others Cannot Match Creates the World Standard

Automobile bearings are the cornerstone of Daido Metal's operations and have been adopted by all Japanese automobile manufacturers and the main manufacturers in other countries. And we have the top market share in Japan for plain bearings for engines. The high-technology engines of today impose sophisticated demands as high performance and high efficiency. Over one hundred different Daido Metal parts of thirty different types may be used for a single automobile: these are mainly engine-related but include other parts such as bushes for the power steering pump. These products of exceptional technical standards and reliability are not used only for passenger cars, buses and construction machinery. They are also used for the high-speed engine bearings of racing cars, including Formula 1 cars, and give an ultra-high-tech edge in motor sports applications.

loating bearings

Trunk lid bearings/ engine hood bearings

Throttle Body bushes

Pump bushes for power steering units

Mechanical part bushes for front reclining seat

Bearings for General Industrial Use

Exceptional Technology is Applied Wherever there are Moving Parts

The bearings made by applying our core technology are not limited to the automotive field; they support all areas of industry. Metal polymer bearings, which have exceptional resistance to wear and strength without the use of lubricant are used in many Field, as office equipment, water power, thermal power, nuclear power generation facilities, high-speed vehicles, rail applications, seismic isolation, system, vibration control device damping equipment, the construction of dome-type stadia, and so on. Daido Metal's bearings are used in all areas where there is "movement," and in this way we contribute to the prosperity of society.

Bearings for Marine and Industrial Use

Supporting the World's **Ultra-high-output Engines** with Bearing Diameters in the 1200 mm range

Bearings for marine engines are required to have exceptional load carrying characteristics. They must have a long life and must be reliable. Daido Metal is one of the few bearing makers in the world that can make super-large bearings with diameters in the 1200 mm range, starting right from the material: we have the largest scale of production and market share in this area.

Bearings for medium-speed engines

Inner diameters of 1000 mm or more are achieved using a high-precision boring process

Bearings for low-speed engine

Lubrication Technology Products

New Products Stemming from Tribology

Making use of the high-level research and technology that we have fostered in our pursuit of Tribology, we also develop products other than bearings that require the application of lubrication technology, such as rotary pumps and centralized lubrication equipment.

Rotary type RP pumps centralized lubrication equipment MR-LUB

Quality Control

The Test of Complete Product Technology: its Confirmation of Our Motto "Quality is Life"

The concept that underpins Daido Metal's entire organization and all its activities is "Quality is Life." We carry out our original production activities and quality control activities based on this principle. Starting with our in-house design and manufacture of tools and fixtures, molds, and production equipment, and our introduction of the latest MECHATRONICS, we implement thorough "in-line assurance," where all of the production staff take responsibility for quality control. We also promote environmental management, including energy savings, recycling, and reduction of waste from production, in the processes that lead up to the birth of a product. In these ways we are concentrating knowledge in all the production processes and continually striving to make innovations in production technology in accordance with market needs.

In-house Vocational Skills Testing

We implement our own vocational skills tests with the aim of passing on skills, and improving the level of skill of each employee. They are implemented on a regular basis, with the human resources planning division assuming the key role.

Permanent Environmental Management System

Daido Metal considers the global environment to be common property of human races. Thus, we are actively working on environmental protection as the most important subject. As a part of this activity, we perceive environmental management systems such as ISO 14001 as an effective tool to continuously reduce environmental impacts. All facilities in Japan as well as many overseas subsidiaries have already acquired certification

Creating Corporate Value on the Global Level Dreams and Responsibility As a Global Enterprise

The basic principle of Daido Metal's global strategy is to carry out production as near to the customer as possible while offering products and services of the same quality as in Japan. In response to reorganization of the industry in the international community and other upheavals in the market, we have already established production bases and joint-venture companies overseas.

Nagoya Headquarters

DAIDO INDUSTRIAL BEARINGS

Gifu Factory

DAIDO PLAIN BEARINGS CO., LTD.

NDC CO., LTD.(Kozaki Facto

DONGSUNG METAL CO., LTD. (KOREA)

DAIDO INDUSTRIAL BEARINGS

DYNA METAL CO., LTD.(THAI)

PT.DAIDO METAL INDONESIA

DAIDO METAL CZECH s.r.o

DAIDO METAL MEXICO S.A.DE C.V.

Global Network

North America. & Canada

Sales and North American Headquarters

DAIDO METAL U.S.A. INC. DETROIT H.Q. 33533 West 12 Mile Road, Suite 301, Farmington Hills. Michigan 48331, U.S.A.

Tel: +1-248-893-2454 Fax: +1-248-893-2456

Customer Service and Warehouse

DAIDO METAL U.S.A. INC. BELLEFONTAINE OFFICE 1215 Greenwood Street, Bellefontaine, Ohio 43311-1692, U.S.A. Tel: +1-937-592-5010 Fax: +1-937-592-2662

South America

Sales and Plant

DAIDO METAL MEXICO SALES Carretera San Isidro Mazatepec No. 7501 Col. Santa Cruz de las Flores C.P. 45640

Tlajomulco de Zúñiga, Jalisco, Mexico

Tel: +52-33-1454-5000 Fax: +52-33-1454-5030

Europe

Sales

DAIDO METAL EUROPE GmbH Curiestrasse 5,70563 Stuttgart, Germany Tel: +49-711-2525250 Fax: +49-711-25252590

Asia

China Sales and Plant

DAIDO PRECISION METAL (SUZHOU) CO., LTD. No.246. Qing Qiu Street. Suzhou Industrial Park 215126 China Tel: +86-512-6283-3531 Fax: +86-512-6283-3003

Taiwan Sales

CHUNG YUAN DAIDO (GUANGZHOU) CO., LTD.

Sales for Automobile Engine Bearings, Automobile Bearings (excl. engine) and Non-Automobile Bearings 4F-B01,

No111, Jichang Road, Baiyun District, Guangzhou City, Guangdong Province, China

Tel: +86-20-8634-7509 Fax: +86-20-3676-0093

South Korea Sales and Plant

DONGSUNG METAL CO., LTD.

160, Backjajeon-ri, Yongsan-myun, Youngdong-kun, Chungbuk 370-912 Korea Tel: +82-43-742-8446 Fax: +82-43-742-8448

Thailand Sales and Plant

DYNA METAL CO., LTD.

Wellgrow Industrial Estate 101 Moo9, Wellgrow Rd. 14 Bangwoa Bangpakong District Chachoengsao 24180, Thailand

Tel: +66-38-57-0611~4 Fax: +66-38-57-0027

Indonesia Sales and Plant

PT.DAIDO METAL INDONESIA

Kawasan Industri P.T. MMID 2100 Blok M25-26. Cikarang Barat, Bekasi 17520, Indonesia

Tel: +62-21-8980038 Fax: +62-21-8980036

India Sales and Plant

BBL DAIDO PRIVATE LTD.

RS No.19, Vandalur Kelambakkam Road, Pudupakkam Village, Kelambakkam, Kancheepuram District, 603103 India

Tel: +91-44-6740-2807

URL https://www.daidometal.com/

Overview of products in order of appearance

Polyme	er bearings
DAIDYNE	DDK05

A AD THE DDINGS	•
DAIDYNE DDK35 ·····	3
DAIDYNE DDK02 ·····	3
DAIDYNE DDK06 ·····	3
DAIBEST DBB01	3
DAIBEST DBS02 ·····	3
DAIBEST DBX01	4
OAIMESH DMM01	4
DAIFORCE A	4
DAIFORCE G	4
DAIHILON DHA	4
AIHILON DHR	4
DAITHERMO DTP	_
DAITHERMO DTK	

• Metallic bearings

INSERT-MOLDED PARTS-

SPECIAL GEOMETRIES ...

THERMALLOY DIVDE
THERMALLOY T type
THERMALLOY TM
THERMALLOY BB type
THERMALLOY PV plate
THERMALLOY pillow unit
DAISLIDE
DAILUBO(Oil-impregnated sintered bearings)
STEEL BUSHING (Lubricated metal)
METAL BUSHING (Lubricated metal)
•Modular products
COMPACT ASSEMBLIES

Dimensions and technical documentation in order of appearance

Polyme	er bearings
DAIDYNE	DDK05

BUSHING 58
FLANGED BUSHING 62
THRUST WASHER ······ 64
SLIDE PLATE 65
DAIDYNE DDK3566
BUSHING 67
FLANGED BUSHING 67
THRUST WASHER 67
SLIDE PLATE 67
DAIDYNE DDK02 68
DAIDYNE DDK06 69
DAIBEST DBB01 70
BUSHING 72
THRUST WASHER74
SLIDE PLATE 75
DAIBEST DBS02 76
BUSHING 78
FLANGED BUSHING80
DAIBEST DBX0182
BUSHING 84
THRUST WASHER86
SLIDE PLATE87
DAIMESH DMM01 88
FLANGED BUSHING90
DAIFORCE A92
DAIFORCE G94
DAIHILON DHA96
DAIHILON DHR97
DAITHERMO DTP98
DAITHERMO DTK99
Metallic bearings
THERMALLOY series100
I DENIVIALLOT Series

- 51

THERIVIALLOT Series
THERMALLOY D type102
DM series104
C series106
THERMALLOY T type 108
THERMALLOY TM110
THERMALLOY BB type111
PLATE 111
BUSHING112
THERMALLOY PV plate115
THERMALLOY pillow unit118
Dimensions of Bearings for units 120
Dimensions of pillow units 120
Dimensions of Diamond Flange units121
DAISLIDE122
HA BUSHING 124
SAF FLANGED BUSHING 128
SAFG FLANGED BUSHING130
BA BUSHING132
TA THRUST WASHER 134
PA SLIDE PLATE······136
L -shaped138
DAILUBO(Oil-impregnated sintered bearings) 140
STEEL BUSHING (lubricated metal)141
METAL BUSHING (lubricated metal) 142
BUSHING 144
all facilities was decade
• Modular products
COMPACT ASSEMBLIES 145

Alphabetically

DAIBEST DBB0139/	
BUSHING	72
THRUST WASHER	74
SLIDE PLATE	75
DAIBEST DBS0239/	76
BUSHING	78
EI ANGED DI IGUING	00
FLANGED BUSHING	00
DAIBEST DBX0140/	82
BUSHING	84
THRUST WASHER ·····	86
SLIDE PLATE	87
DAIDYNE DDK02 ······38/	68
DAIDYNE DDK0537/	54
BUSHING ·····	58
FLANGED BUSHING	62
THRUST WASHER	64
SLIDE PLATE ······	65
DAIDYNE DDK06	39
DAIDYNE DDK35	66
DAIDYNE DDK3537/	67
BUSHING	
FLANGED BUSHING	07
THRUST WASHER	6/
SLIDE PLATE	67
DAIFORCE A41/	92
DAIFORCE G41/	94
DAIHILON DHA ··········42/	96
DAIHILON DHR42/	97
DAILUBO(Oil-impregnated sintered bearings)48/1	
DAIMESH DMM01	88
BUSHING	90
DAISLIDE48/1	22
DAISLIDE48/1	22
DAISLIDE 48/1 HA BUSHING 1	22 24
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1	22 24 28
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1	22 24 28 30
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1	22 24 28 30 32
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1	22 24 28 30 32 34
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1	22 24 28 30 32 34 36
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1	22 24 28 30 32 34 36 38
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/	22 24 28 30 32 34 36 38
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/	22 24 28 30 32 34 36 38
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/	22 24 28 30 32 34 36 38 98
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS	22 24 28 30 32 34 36 38 98 99
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1	22 24 28 30 32 34 36 38 98 99 51 42
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1	22 24 28 30 32 34 36 38 98 99 51 42 44
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1	22 24 28 30 32 34 36 38 98 99 51 42 44 45
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES	22 24 28 30 32 34 36 38 99 51 42 44 45 51
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES STEEL BUSHING (lubricated metal) 49/1	22 24 28 30 32 34 36 38 99 51 42 44 45 51
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1	22 24 28 30 32 34 36 38 99 51 42 44 45 51
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1	22 24 28 30 32 34 36 38 99 51 42 44 45 51 41
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1	22 24 28 30 32 34 36 38 99 51 42 44 45 51 11 11
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1	22 24 28 30 32 34 36 38 99 51 44 45 51 41 11 11 12 02
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1	22 24 28 30 32 34 36 38 99 51 44 45 51 41 11 11 20 04
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1	22 24 28 30 32 34 36 38 99 51 42 44 45 51 11 11 11 12 04 06
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES 5 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1	22 24 28 30 32 33 33 36 38 99 51 42 44 45 51 11 11 11 12 00 4 06 18
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1 Dimensions of Bearings for units 1	22 24 28 30 32 34 36 38 99 51 44 45 51 11 11 12 02 04 61 18 20
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 SPECIAL GEOMETRIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1 Dimensions of Bearings for units 1 Dimensions of pillow units 1	22 24 28 30 32 34 36 38 99 51 44 45 51 11 11 11 20 04 61 82 20
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 T ceries 1 T Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1	22 24 30 32 33 34 36 38 39 51 44 44 51 11 11 12 20 40 60 18 20 20 21
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 T ceries 1 T Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1	22 24 28 30 32 33 33 43 38 89 99 51 44 44 51 11 11 12 20 40 60 18 20 20 20 21
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 SAFG FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 T ceries 1 T Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1 THERMALLOY PV plate 47/1	22 24 28 30 32 33 33 43 38 39 51 44 44 51 11 11 11 12 20 40 60 61 82 20 21 15
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1 Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1 THERMALLOY Series 1	22 24 30 32 33 33 33 33 33 33 43 33 44 44 55 11 11 11 12 20 40 60 60 60 60 60 60 60 60 60 60 60 60 60
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1 Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1 THERMALLOY PV plate 47/1 THERMALLOY Series 1 THERMALLOY TM 46/1	22 24 30 32 33 33 33 33 33 44 44 55 51 11 11 11 11 11 11 11 11 11 11 11
DAISLIDE 48/1 HA BUSHING 1 SAF FLANGED BUSHING 1 BA BUSHING 1 TA THRUST WASHER 1 PA SLIDE PLATE 1 L-shaped 1 DAITHERMO DTP 43/ DAITHERMO DTK 43/ INSERT-MOLDED PARTS 49/1 Metal bushing (lubricated metal) 49/1 BUSHING 1 COMPACT ASSEMBLIES 51/1 STEEL BUSHING (lubricated metal) 49/1 THERMALLOY BB type 46/1 PLATE 1 BUSHING 1 THERMALLOY D type 45/1 DM series 1 C series 1 THERMALLOY pillow unit 47/1 Dimensions of Bearings for units 1 Dimensions of Diamond Flange units 1 THERMALLOY Series 1	22 24 30 32 33 33 33 33 33 44 44 55 51 11 11 11 11 11 11 11 11 11 11 11

Alphabetically for each code

•Polymer bearings

DBB (DAIBEST DBB01 BOSHING)······	٠/
DBB-W (DAIBEST DBB01 THRUST WASHER)	. 7
DBS (DAIBEST DBS02 BUSHING)	. 7
DBS-F (DAIBEST DBS02 FLANGED BUSHING)	. 8
DXB (DAIBEST DBX01 BUSHING)	. 8
DXP (DAIBEST DBX01 SLIDE PLATE)	. 8
DXT (DAIBEST DBX01 THRUST WASHER)	. 8
K5B (DAIDYNE DDK05 BUSHING)	. 5
K5B(B) (DAIDYNE DDK35 BUSHING)	. 6
K5F (DAIDYNE DDK05 FLANGED BUSHING)······	. 6
K5F(B) (DAIDYNE DDK35 FLANGED BUSHING)	. 6
K5P (DAIDYNE DDK05 SLIDE PLATE) ·····	. 6
K5P(B) (DAIDYNE DDK35 SLIDE PLATE) ······	. 6
K5T (DAIDYNE DDK05 THRUST WASHER)	
K5T(B) (DAIDYNE DDK35 THRUST WASHER)	
MS-F (DAIMESH DMM01 BUSHING)	. 9
SS-DBB (DAIBEST DBB01 SLIDE PLATE)	. 9
ablicate His Incoming a	
Metallic bearings	

- Wictaino bearings
BA (DAISLIDE BUSHING)132
BBL2/8 (THERMALLOY BB type PLATE) 111
BM (THERMALLOY BB type BUSHING) 112
GB-C (THERMALLOY D type C series) 106
DM (THERMALLOY D type DM series) 104
HA (DAISLIDE BUSHING)······124
H-U,S-U,S-L (THERMALLOY PV PLATE) 115
LA (DAISLIDE L-shaped) 138
PA (DAISLIDE PLATE) 136
SAF (DAISLIDE FLANGED BUSHING) 128
SAFG (DAISLIDE FLANGED BUSHING)130
TA (DAISLIDE THRUST WASHER)134
UDSFL2-S1T1 (THERMALLOY Dimensions of Diamond Flange units) \cdots 121
UDSP2-S1T1 (THERMALLOY Dimensions of pillow units) 120
UD2-T2 (THERMALLOY Dimensions of Bearings for units) 120

Planned Part Number Outer Dia. Length Quantity/Month Rough Interface Illustration around Bearing 1. Load Condition: Enter Check Mark in □. 4. Slide Speed or Swing Cycle Swing □Reciprocal 8. Housing: Change of I.D. □OK □NO Static □ Dynamic \square Rev. speed:V ☐ Housina I.D. Shock □Vibration ☐ Material ☐ Swing Cycle: C Repeated Young's Modulus MPa ☐ Recipro. Cycle: C cpm Revolution Reciprocating Poison's Ratio Swing 5. Load 9. Working Atmosphere ☐ Shaft moves ☐ Bearing moves ☐ Load:W ☐ There is Material in the Clearance. ☐ Oil → ☐ For Lubrication 2. Operation Time 6. Specific Load ☐ Water ☐ Foreign Material ☐ Continuous ☐ Specific Load:P MPa Others 7. Mating Shaft: Change of Shaft Dia. ☐ OK ☐ NO ☐ Frequency Cycle/mir 10. Attached Documents ☐ Shaft Diameter \square Interval Times/Day ☐ Material Others 3. RPM or Swing Angle ☐ Surface Roughness/Finish 11. Remarks ☐ Hardness Surface Treatment ☐ New Design ☐ Swing Angle:θ ☐ Desired Clearance ☐ Modification → Existing Bearing Company Name Title Name Phone Number

To DAIDO METAL Co., Ltd. Polymer Bearing Co.

BEARING SPECIFICATIONS

Part Name

(For customer)

Equipment Name

Planned Dimensions and Quantity

Motion

Form

Operation

□RPM:N

☐ Stroke:S

Date

Fax Number

Machine/

SPECIFICATION SHEET

Fill out the necessary items and send to the relevant Daido department.

🗗 DAIDO METAL CO., LTD.

E-mail

URL/http://www.daidometal.com mail:overseas_sales_group3@daidometal.com

Head Office Company in Charge Phone 81-568-61-4920 FAX 81-568-61-1465

Please contact

URL/http://www.daidometal.com mail:overseas_sales_group3@daidometal.com

Head Office Company in Charge Phone 81-568-61-4920 FAX 81-568-61-1465

Please take care to input the fax number correctly.

To DAIDO METAL Co., Ltd. Polymer Bearing Co.

(For customer)

BEARING SPECIFICATIONS

DEARING SPECIFICATIONS													
Machine/ Equipment	Name					Р	art Name						
	Plar	Planned Part Number		er Form		Inner Dia		Outer Dia.	Length		Quantity/Mont		
Planned Dimension													
and													
Quantity	-	Note) Form means classification of cylindrical bu				d buching throat wool	ar and plata ata	Enter aventity/month	without fail because the	antitu influence	the meterial t	is he colored	
					usning, nange	u bushing, tirust wash	er and plate, etc.	. Enter quantity/month	without rail, because the q	r	r	o be selected.	
Rough Interface Illustration around Bearing											ļļļ		
				+									
	+		+	1-1-1-									
									,,,,,				
											1		
		4	ļļ	444.									
	4	+	ļ.,										
1. Load C	Condition	:Enter (Check M	lark in □.	4. Slide Speed or Swing Cycle Swing Reciprocal				8. Housing:Ch	ange of I.D	. □OK	□NO	
Туре				☐ Dynamic ☐ Vibration		☐ Rev. speed:V [☐ Swing Cycle:C [☐		m/min	□ Housing I.D. φ □ Material		mm		
								cpm					
	□Revo	☐ Revolution ☐ Rec		procating	Recipro. Cycle:C cpm				Young's Modulus MPa Poison's Ratio				
Motion	Swin			p. 00ag	5. Load								
Form	□Shaft	Shaft moves Bearing			□Load	:W		KN	9. Working Atmosphere There is Material in the Clearance.				
2. Operat	tion Time)			6. Specific Load				☐ Oil → ☐ For Lubrication				
	☐ Contin	uous				eific Load:P		MPa	□ Water □ Foreign Material □				
	☐Interm	ittent		Hour/Day					Others				
Operation		requency Cycle/min				g Shaft: Change	of Shaft Dia	a. □OK □NO	10. Attached Documents				
	□ Interva					t Diameter	φ	mm	□ Drawing □ Specification				
3. RPM c	or Swina	Angle			□Mate		iah		☐ Others				
		I.g.o		rpm	☐ Surface Roughness/Finish☐ ☐ Hardness ☐				11. Remarks				
□ RPM:N rpm □ Swing Angle:θ ± Degrees				ace Treatment			☐ New Design						
Stroke:S ± mm		☐ Desired Clearance mm			mm	☐ Modification → Existing Bearing							
										·			
Date													
Comp	any Nam	^					Title						
Phone	Number	•			Name Name								
Fax No	umber						E-ma	il					
					7								
				Please contact	DO METAL	AIDO 1			., LTD.				
				m:		L/http://wwv seas_sales_g			om				
			_ H			n Charge Phone	-						

Please contact

URL/http://www.daidometal.com mail:overseas_sales_group3@daidometal.com

Head Office Company in Charge Phone 81-568-61-4920 FAX 81-568-61-1465

Please take care to input the fax number correctly.

To DAIDO METAL Co., Ltd. Polymer Bearing Co.

(For customer)

BEARING SPECIFICATIONS

DEARING SPECIFICATIONS													
Machine/ Equipment	Name					Р	art Name						
	Plar	Planned Part Number		er Form		Inner Dia		Outer Dia.	Length		Quantity/Mont		
Planned Dimension													
and													
Quantity	-	Note) Form means classification of cylindrical bu				d buching throat wool	ar and plata ata	Enter aventity/month	without fail because the	antitu influence	the meterial t	is he colored	
					usning, nange	u bushing, tirust wash	er and plate, etc.	. Enter quantity/month	without rail, because the q	r	r	o be selected.	
Rough Interface Illustration around Bearing											ļļļ		
				+									
	+		+	1-1-1-									
									,,,,,				
											1		
		4	ļļ	444.									
	4	+	ļ.,										
1. Load C	Condition	:Enter (Check M	lark in □.	4. Slide Speed or Swing Cycle Swing Reciprocal				8. Housing:Ch	ange of I.D	. □OK	□NO	
Туре				☐ Dynamic ☐ Vibration		☐ Rev. speed:V [☐ Swing Cycle:C [☐		m/min	□ Housing I.D. φ □ Material		mm		
								cpm					
	□Revo	☐ Revolution ☐ Rec		procating	Recipro. Cycle:C cpm				Young's Modulus MPa Poison's Ratio				
Motion	Swin			p. 00ag	5. Load								
Form	□Shaft	Shaft moves Bearing			□Load	:W		KN	9. Working Atmosphere There is Material in the Clearance.				
2. Operat	tion Time)			6. Specific Load				☐ Oil → ☐ For Lubrication				
	☐ Contin	uous				eific Load:P		MPa	□ Water □ Foreign Material □				
	☐Interm	ittent		Hour/Day					Others				
Operation		requency Cycle/min				g Shaft: Change	of Shaft Dia	a. □OK □NO	10. Attached Documents				
	□ Interva					t Diameter	φ	mm	□ Drawing □ Specification				
3. RPM c	or Swina	Angle			□Mate		iah		☐ Others				
		I.g.o		rpm	☐ Surface Roughness/Finish☐ ☐ Hardness ☐				11. Remarks				
□ RPM:N rpm □ Swing Angle:θ ± Degrees				ace Treatment			☐ New Design						
Stroke:S ± mm		☐ Desired Clearance mm			mm	☐ Modification → Existing Bearing							
										·			
Date													
Comp	any Nam	^					Title						
Phone	Number	•			Name Name								
Fax No	umber						E-ma	il					
					7								
				Please contact	DO METAL	AIDO 1			., LTD.				
				m:		L/http://wwv seas_sales_g			om				
			_ H			n Charge Phone	-						

Please contact

URL/http://www.daidometal.com mail:overseas_sales_group3@daidometal.com

Head Office Company in Charge Phone 81-568-61-4920 FAX 81-568-61-1465

Please take care to input the fax number correctly.

To DAIDO METAL Co., Ltd. Polymer Bearing Co.

(For customer)

BEARING SPECIFICATIONS

DEARING SPECIFICATIONS													
Machine/ Equipment	Name					Р	art Name						
	Plar	Planned Part Number		er Form		Inner Dia		Outer Dia.	Length		Quantity/Mont		
Planned Dimension													
and													
Quantity	-	Note) Form means classification of cylindrical bu				d buching throat wool	ar and plata ata	Enter aventity/menth	without fail because the	antitu influence	the meterial t	is he colored	
					usning, nange	u bushing, tirust wash	er and plate, etc.	. Enter quantity/month	without rail, because the q	r	r	o be selected.	
Rough Interface Illustration around Bearing											ļļļ		
				+									
	+		+	1-1-1-									
									,,,,,				
											1		
		4	ļļ	444.									
	4	+	ļ.,										
1. Load C	Condition	:Enter (Check M	lark in □.	4. Slide Speed or Swing Cycle Swing Reciprocal				8. Housing:Ch	ange of I.D	. □OK	□NO	
Туре				☐ Dynamic ☐ Vibration		☐ Rev. speed:V [☐ Swing Cycle:C [☐		m/min	□ Housing I.D. φ □ Material		mm		
								cpm					
	□Revo	☐ Revolution ☐ Rec		procating	Recipro. Cycle:C cpm				Young's Modulus MPa Poison's Ratio				
Motion	Swin			p. 00ag	5. Load								
Form	□Shaft	Shaft moves Bearing			□Load	:W		KN	9. Working Atmosphere There is Material in the Clearance.				
2. Operat	tion Time)			6. Specific Load				☐ Oil → ☐ For Lubrication				
	☐ Contin	uous				eific Load:P		MPa	□ Water □ Foreign Material □				
	☐Interm	ittent		Hour/Day					Others				
Operation		requency Cycle/min				g Shaft: Change	of Shaft Dia	a. □OK □NO	10. Attached Documents				
	□ Interva					t Diameter	φ	mm	□ Drawing □ Specification				
3. RPM c	or Swina	Angle			□Mate		iah		☐ Others				
		I.g.o		rpm	☐ Surface Roughness/Finish☐ ☐ Hardness ☐				11. Remarks				
□ RPM:N rpm □ Swing Angle:θ ± Degrees				ace Treatment			☐ New Design						
Stroke:S ± mm		☐ Desired Clearance mm			mm	☐ Modification → Existing Bearing							
										·			
Date													
Comp	any Nam	^					Title						
Phone	Number	•			Name Name								
Fax No	umber						E-ma	il					
					7								
				Please contact	DO METAL	AIDO 1			., LTD.				
				m:		L/http://wwv seas_sales_g			om				
			_ H			n Charge Phone	-						

Please contact

URL/http://www.daidometal.com mail:overseas_sales_group3@daidometal.com

Head Office Company in Charge Phone 81-568-61-4920 FAX 81-568-61-1465

Please take care to input the fax number correctly.

